Some solutions to Problem Set 7.

1. None of the spaces is compact. Take the sequence \(\{x_n\} \) with \(x_n = n \). Then \(\{x_n\} \) does not have a convergent subsequence in \(\mathbb{R} \) with the metrics \(d_1 \) and \(d_2 \). (Alternatively: \((\mathbb{R}, d_1) \) is equivalent to \(\mathbb{R} \) with the usual metric and \((\mathbb{R}, d_2) \) is isometric to \((-\pi/2, \pi/2) \) with the usual metric.) Also \(d_2(x_n, x_m) = 1 \) for \(n \neq m \), so the sequence does not have a convergent subsequence with the metric \(d_2 \).

2. Let \(\varepsilon > 0 \). For each \(x \in X \), there exists \(\delta_x > 0 \) such that \(d(x, y) < 2\delta_x \) implies \(d(f(x), f(y)) < \frac{1}{2}\varepsilon \). Now \(\{B(x, \delta_x) : x \in X\} \) is an open cover of \(X \) so contains a finite subcover, say \(\{B(x_1, \delta_{x_1}), \ldots, B(x_n, \delta_{x_n})\} \). Let \(\delta = \min(\delta_{x_1}, \ldots, \delta_{x_n}) \). Now let \(y, z \in X \) with \(d(y, z) < \delta \). Then \(y \in B(x_i, \delta_{x_i}) \) for some \(i \) in \(\{1, \ldots, n\} \) so \(d(y, x_i) < \delta_{x_i} \) and \(d(z, x_i) \leq d(z, y) + d(y, x_i) < \delta + \delta_{x_i} \leq \delta_{x_i} + \delta_{x_i} = 2\delta_{x_i} \). Thus \(d(f(z), f(y)) \leq d(f(z), f(x_i)) + d(f(x_i), f(y)) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon \). This proves that \(f \) is uniformly continuous.

3. Arguing by contradiction assume that \(\{F_i\}_{i \in I} \) is a family of closed sets having the finite intersection property such that \(\bigcap_{i \in I} F_i = \emptyset \). Let \(U_i = X \setminus F_i \). Then the \(U_i \)'s are open and \(\bigcup_{i \in I} U_i = \bigcup_{i \in I} (X \setminus F_i) = X \setminus \bigcap_{i \in I} F_i = X \). Since \(X \) is compact, there is a finite set \(J \subset I \) such that \(X = \bigcup_{i \in J} U_i \). But then \(\bigcap_{i \in J} F_i = \bigcap_{i \in J} (X \setminus U_i) = X \setminus \bigcup_{i \in J} U_i = \emptyset \), contradicting the fact that \(\bigcap_{i \in J} F_i \neq \emptyset \) for any finite \(J \). Conversely, assume that for every family of closed sets \(\{F_i\}_{i \in I} \) having finite intersection property, we have \(\bigcap_{i \in I} F_i \neq \emptyset \). Now if \(X \) is not compact, then there is an open cover \(\{U_i\}_{i \in I} \) of \(X \) such that for any finite subset \(J \subset I \) we have \(X \neq \bigcup_{i \in J} U_i \). Define \(F_i = X \setminus U_i \). Then \(F_i \) is closed and \(\bigcap_{i \in I} F_i = X \setminus \bigcup_{i \in I} U_i = \emptyset \). Hence \(\{F_i\} \) does not have finite intersection property. That is there is a finite subset \(J \subset I \) so that \(\bigcap_{i \in J} F_i = \emptyset \). But then \(\bigcup_{i \in J} U_i = X \setminus \bigcap_{i \in I} F_i = X \), contradiction.

4. We can construct a sequence of continuous functions \(f_n \) in \(A \), where \(f_n(x) = 0 \) for \(0 \leq x \leq \frac{1}{n+1} \), \(f_n(x) = 1 \) for \(\frac{1}{n} \leq x \leq 1 \), and \(f_n(x) = n(n+1)(x - \frac{1}{n+1}) \) is linear for \(\frac{1}{n+1} \leq x \leq \frac{1}{n} \). Then for \(m > n \), \(f_m(\frac{1}{m}) = 1, f_n(\frac{1}{m}) = 0 \) so \(d(f_n, f_m) \geq 1 \). But any \(1/2 \)-ball contains at most one \(f_n \), so \(A \) has no finite \(1/2 \)-net.

5. Let \(\varepsilon > 0 \). There exists a finite \(\varepsilon/2 \)-net for \(A \), \(S = \{x_1, \ldots, x_n\} \). Then \(A \subset \bigcup_{i \leq n} B(x_i, \varepsilon/2) \subset \bigcup_{i \leq n} \overline{B}(x_i, \varepsilon/2) \). Since \(\bigcup_{i \leq n} \overline{B}(x_i, \varepsilon/2) \) is closed (as a finite union of closed sets), it follows that \(A \subset \bigcup_{i \leq n} \overline{B}(x_i, \varepsilon/2) \subset \bigcup_{i \geq n} B(x_i, \varepsilon) \). So, \(S = \{x_1, \ldots, x_n\} \) is a finite \(\varepsilon \)-net for \(A \).

6. Assume that \((X, d) \) is totally bounded. Let \(\{x_n\} \) be any sequence in \(X \). Since \((X, d) \) is totally bounded, \(X \) can be covered by finitely many balls of radius \(1 \). One of these balls, say \(B(y_1, 1) \), contains \(x_n \) for infinitely many \(n \)'s. Choose \(n_1 \in \mathbb{N} \) such that \(x_{n_1} \in B(y_1, 1) \). Since \(X \) can be covered by finitely many balls of radius \(1/2 \), \(B(y_1, 1) \cap B(y_2, 1/2) \) for some \(y_2 \) contains \(x_{n_1} \) for infinitely many \(n \)'s. Choose \(n_2 > n_1 \) such that \(x_{n_2} \in B(y_1, 1) \cap B(y_2, 1/2) \). Proceeding in this way we find a sequence \(\{n_k\} \) of positive integers such that \(n_{k+1} > n_k \) for all \(k \), a sequence of balls \(B(y_k, 1/k) \), and a subsequence \(\{x_{n_k}\} \) satisfying \(x_{n_k} \in B(y_1, 1) \cap \cdots \cap B(y_k, 1/k) \). We claim that \(\{x_{n_k}\} \) is Cauchy. To see this note that for \(l \geq k \), we have \(x_{n_l}, x_{n_l} \in B(y_k, 1/k) \), hence \(d(x_{n_l}, x_{n_l}) < 2/k \). Take \(\varepsilon > 0 \) and choose \(N \in \mathbb{N} \) such that \(2/N \leq \varepsilon \). Then for \(l, k \geq N \), \(d(x_{n_l}, x_{n_l}) < 2/N \leq \varepsilon \). Consequently, \(\{x_n\} \) has a Cauchy subsequence.
Conversely, arguing by contradiction, assume that (X,d) is not totally bounded. Then there is α such that X is not equal to a finite union of balls of radius α. Take any point $x \in X$ and call it x_1. Then there exists a point $x_2 \notin B(x_1,\alpha)$. So $d(x_2,x_1) \geq \alpha$. Since $X \neq B(x_1,\alpha) \cup B(x_2,\alpha)$, there exists $x_3 \notin B(x_1,\alpha) \cup B(x_2,\alpha)$. That is $d(x_3,x_1) \geq \alpha$ and $d(x_3,x_2) \geq \alpha$. Continuing this way we find a sequence $\{x_n\}$ such that $x_{n+1} \notin B(x_1,\alpha) \cup \cdots \cup B(x_n,\alpha)$. That is, $d(x_{n+1},x_1) \geq \alpha, \ldots, d(x_{n+1},x_n) \geq \alpha$. The sequence $\{x_n\}$ has the property that $d(x_m,x_n) \geq \alpha$ for all $n \neq m$, so it does not contain a Cauchy subsequence.

7. Let $\varepsilon > 0$. Since f is uniformly continuous there is $\delta > 0$ such that if $d(x,y) < \delta$, then $d(f(x),f(y)) < \varepsilon$. The space X is totally bounded so there is a finite set of points x_1, \ldots, x_k such that $X = \bigcup_{i=1}^{k} B(x_i,\delta)$. We claim that $Y = \bigcup_{i=1}^{k} B(f(x_i),\varepsilon)$. To see this, let $y \in Y$, then there is $x \in X$ such that $f(x) = y$. Since $X = \bigcup_{i=1}^{k} B(x_i,\delta)$, $x \in B(x_i,\delta)$ for some $1 \leq i \leq k$. So $y = f(x) \in f(B(x_i,\delta)) \subset B(f(x_i),\varepsilon)$. That is, $Y = \bigcup_{i=1}^{k} B(f(x_i),\varepsilon)$. (As you have noticed, in order to prove the result one only needs that $f : X \to Y$ is surjective and uniformly continuous. So the problem should be stated as follows: If $f : X \to Y$ is a bijection and f, f^{-1} are uniformly continuous, then X is totally bounded if and only if Y is totally bounded.)

8. Let $\{U_i\}_{i \in I}$ be an open cover of the compact metric space X. We first show: there exists $\delta > 0$ such that every ball of radius δ is contained in U_i for some $i \in I$.

Proof. Assume not. Then we can construct a sequence of balls $B(x_n,1/n)$ each of which is not contained in any U_i. Since X is compact, the sequence $\{x_n\}$ has a convergent subsequence, say $x_{n_k} \to x$. But $x \in U_i$ for some $i \in I$ and U_i is open. So there exists $\varepsilon > 0$ such that $B(x,\varepsilon) \subset U_i$. Now consider $y \in B(x_{n_k},1/n_k)$. For k large, $d(x,y) \leq d(x,x_{n_k}) + d(x_{n_k},y) < d(x,x_{n_k}) + 1/n_k < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Hence $B(x_{n_k},1/n_k) \subset B(x,\varepsilon) \subset U_i$ for k large, contradiction. Finally, let $A \subset X$ with diam $(A) < \delta$ and pick $x \in A$. Then $A \subset B(x,\delta)$, hence $A \subset U_i$ for some $i \in I$.

9. Clearly f is injective. To see that it is also surjective we argue by a contradiction and assume that there is $a \in X \setminus f(X)$. Since $f(X)$ is compact, $d(a,f(X)) = r > 0$. Define the sequence $x_1 = f(a), x_2 = f^2(a), x_3 = f^3(a), \ldots$. For $m > n$ we have $d(x_m,x_n) = d(f^m(a),f^n(a)) = d(f^{m-1}(a),f^{n-1}(a)) = \cdots = d(f^{m-n}(a),a) \geq r > 0$ since $f^{m-n}(a) \in f(X)$ and $d(a,f(X)) = r$. Hence, no subsequence of $\{x_n\}$ is Cauchy, so no subsequence converges, contradicting the fact that X is compact.