1. (8 marks) Consider the problem

\[\min x_1^2 x_2^2 - 2x_1 x_2^2 + x_1^2 + 3x_2^2 - 2x_1 - 4x_2. \]

Apply two iterations of the

(a) steepest descent method;
(b) Newton’s method;
(c) BFGS method

to this problem, starting from the point \(x^0 = (0, 0) \). Which method produces the most accurate estimate?

We call the objective function \(f(x) \). The gradient of \(f(x) \) is

\[\nabla f(x) = (2x_1 x_2^2 - 2x_2^2 + 2x_1 - 2, 2x_1 x_2^2 - 4x_1 x_2 + 6x_2 - 4). \]

When this is \((0, 0)\), the first component gives us

\[2(x_1 - 1)(x_2^2 + 1) = 0 \]

which implies \(x_1 = 1 \). The second component gives

\[2(x_1 - 1)^2 + 4(x_2 - 1) = 0 \]

which implies \(x_2 = 1 \).

The Hessian of \(f(x) \) is

\[\nabla^2 f(x) = \begin{bmatrix} 2x_2^2 + 2 & 4x_1 x_2 - 4x_2 \\ 4x_1 x_2 - 4x_2 & 2x_1^2 - 4x_1 + 6 \end{bmatrix}. \]

At the point \((1, 1)\) this is

\[\nabla^2 f(1, 1) = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \]

which is clearly positive definite; therefore \((1, 1)\) is the global minimum.
(a) $\nabla f(0, 0) = (-2, -4)$, so $d^0 = (2, 4)$. Minimising $f(2t, 4t)$ gives the step size $t_0 = 0.286$ and so
\[x^1 = (0, 0) + 0.286(2, 4) = (0.571, 1.142). \]
Then $\nabla f(0.571, 1.142) = (-1.977, 0.988)$, so $d^1 = (1.977, -0.988)$. Minimising $f(0.571 + 1.977t, 1.142 - 0.988t)$ gives the step size $t_1 = 0.202$, so our final iterate is
\[x^2 = (0.571, 1.142) + 0.202(1.977, -0.988) = (0.970, 0.943). \]

(b) $\nabla^2 f(0, 0) = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}$, which is positive definite. The Newton direction is
\[d^0 = -\nabla^2 f(0, 0)^{-1}\nabla f(0, 0) = -\begin{bmatrix} 1/2 & 0 \\ 0 & 1/6 \end{bmatrix} \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1/4 \\ -1/6 \end{bmatrix}. \]
Minimising $f(t, \frac{2}{3}t)$ gives the step size $t_0 = 1.172$ and so
\[x^1 = (0, 0) + 1.172\left(\frac{2}{3}\right) = (1.172, 0.781). \]
Then
\[d^1 = -\nabla^2 f(1.172, 0.781)^{-1}\nabla f(1.172, 0.781) = -\begin{bmatrix} 3.22 & 0.536 \\ 0.536 & 4.059 \end{bmatrix}^{-1} \begin{bmatrix} 0.553 \\ -0.829 \end{bmatrix} = \begin{bmatrix} -0.210 \\ 0.232 \end{bmatrix}. \]

\[x^2 = (1.172, 0.781) + 0.886(-0.210, 0.232) = (0.985, 0.978). \]

(c) The first iterate of the BFGS method is the same as the steepest descent method, as we are taking $H_0 = I$. So our first iterate is
\[x^1 = (0.571, 1.142). \]
Updating H, we find that $s^0 = (0.571, 1.142)$, $g^0 = (0.023, 4.988)$, and $r^0 = (0.004, 0.874)$. This gives us
\[H_1 = \begin{bmatrix} 1.301 & 0.108 \\ 0.108 & 0.228 \end{bmatrix}. \]
Then our descent direction is
\[d^1 = -H_1\nabla f(0.571, 1.142) = -\begin{bmatrix} 1.301 & 0.108 \\ 0.108 & 0.228 \end{bmatrix} \begin{bmatrix} -1.977 \\ -0.988 \end{bmatrix} = \begin{bmatrix} 2.466 \\ -0.011 \end{bmatrix}. \]

Minimising $f(0.571 + 2.466t, 1.142 - 0.011t)$ gives the step size $t_1 = 0.174$, so our final iterate is
\[x^2 = (1.001, 1.140). \]
To compare the estimates, we look at the normed error.

<table>
<thead>
<tr>
<th>Method</th>
<th>Normed error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steepest descent</td>
<td>0.064</td>
</tr>
<tr>
<td>Newton’s</td>
<td>0.020</td>
</tr>
<tr>
<td>BFGS</td>
<td>0.140</td>
</tr>
</tbody>
</table>

Therefore Newton’s method is the most accurate.

2. (6 marks) **The BFGS method is constructed so that all the approximate inverse Hessians, \(H_k \), are symmetric and positive definite.**

(a) Show by direct calculation that the \(H_k \’s \) you obtained in question 1(c) are positive definite.

(b) Explain why we want \(H_k \) to be positive definite.

(c) Prove from the BFGS formula that \(H_k \) is symmetric.

(a) Obviously \(H_0 = I \) is positive definite. We apply the leading principal minor test to show that \(H_1 \) is positive definite. Obviously 1.301 > 0, and \(\det(H_1) = 0.286 > 0 \). Therefore \(H_1 \) is positive definite.

(b) We want \(H_k \) to be positive definite so that the direction we search in, \(-H_k \nabla f(x^k)\), is a descent direction.

(c) We use induction. Obviously \(H_0 \) is symmetric. Assume that \(H_k \) is symmetric. Then

\[
H_{k+1}^T = H_k^T + \frac{1 + \langle r^k, g^k \rangle}{\langle s^k, g^k \rangle} [s^k(s^k)^T - [s^k(r^k)^T - [r^k(s^k)^T] = H_k + \frac{1 + \langle r^k, g^k \rangle}{\langle s^k, g^k \rangle} s^k(s^k)^T - r^k(r^k)^T - s^k(r^k)^T
\]

Thus \(H_{k+1} \) is symmetric and \(H_k \) is symmetric for all \(k \) by induction.

3. (6 marks) **Implement the steepest descent method in MATLAB code.** For each iteration, find the step size using the algorithm which finds a step size satisfying the Armijo-Goldstein and Wolff conditions.

See the file steepestDescent.m on the website.