620-361 Operations Research Techniques and Algorithms

Practice Class 2

PROBLEM 1. For each of the following matrices state whether it is positive definite, negative definite, or neither:

(a) \[
\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix}
\]

(b) \[
\begin{pmatrix}
7 & \sqrt{3} \\
\sqrt{3} & 1
\end{pmatrix}
\]

(c) \[
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\]

(d) \[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

PROBLEM 2. A retailer is planning her yearly inventory strategy for a commodity for which the demand rate is \(D \) units per year. The storage cost is \(S \) per unit and the fixed cost of placing an order is \(C \) dollars. Customers will accept shortages, and the cost of maintaining a list of backorders is \(B < S \). Let \(x \) be the order amount and \(y \) the maximum shortage inventory prior to ordering. Find the optimal value of \(x \) and \(y \).

PROBLEM 3. Problem 5(b) and 5(d) of Collected exercises (Lecture Notes).