Operations Research Techniques and Algorithms (620-361)

Dr Yao-ban Chan

y.chan@ms.unimelb.edu.au
Telephone: 8344 9073
Office: Room 198, Richard Berry Building

Christina Burt
c.burt@ms.unimelb.edu.au
Telephone: 8344 1797
Office: 139 Barry St

March 5th, 2008
Today’s Lecture

Unimodal 1-D unconstrained optimisation

Fibonacci search
The function f is *unimodal* on $[a, b]$ if it has only one local minimum - note, this local minimum is thus also a global minimum.

Until further notice, we shall assume that f is unimodal.
Now assume that we have two f-calculations at points p and q. That is, we know $f(p)$ and $f(q)$. A little thought shows us that

- If $f(p) \leq f(q)$, then $x_{min} \in [a, q]$.
- If $f(p) \geq f(q)$, then $x_{min} \in [p, b]$.
Now suppose that we want to find x_{min} to within a specified tolerance ϵ. That is we want to reduce the size of the interval in which we know the minimum lies to width 2ϵ.

How do we choose p, q and all the subsequent points at which we make an f-calculation so that we get to this stage with as few f-calculations as possible?
The Fibonacci Search

Suppose that we are allowed \(n \geq 2 \) \(f \)-calculations, and that we want to reduce the length of the interval in which the minimum occurs from \([a, b]\) to the smallest length possible.

Let’s call this smallest length \(\alpha \) and, for \(k \leq n \), define \(F_k(\alpha) \) to be the maximum length of an interval that can be reduced to \(\alpha \) in \(k \) \(f \)-calculations.

Thus \(F_n(\alpha) = b - a \). How should we proceed?
We make two \(f \) calculations at points \(p < q \). Then, by the observation above, the new interval will be either \([a, q]\) or \([p, b]\). We can’t tell which will be the case, so we should choose \(p \) and \(q \) such that \(q - a = b - p \).

For the purposes of this explanation, let’s assume (w.l.o.g.) that \(f(p) \leq f(q) \) and so \(x_{\text{min}} \in [a, q] \).
We still have $n - 2$ f-calculations to use to reduce the interval. Consider first the case $n > 2$.

We already know the value of f at point $p \in [a, q]$, and it makes sense to use this. Thus, we let the length of $[a, q]$ (and $[p, b]$) be denoted $F_{n-1}(\alpha)$.

In order to reduce the interval again, we need to evaluate f at a new point r, then compare $f(r)$ and $f(p)$. By the same argument as we used above, we should choose r such that $p - a = q - r$.

Both of the intervals $[a, p]$ and $[r, q]$ are of length $F_{n-2}(\alpha)$.
We can now write the relation

\[b - a = (b - p) + (p - a) \]

as

\[F_n(\alpha) = F_{n-1}(\alpha) + F_{n-2}(\alpha). \] (1)
If \(n = 2 \), then the situation is a bit different; we have no more \(f \) calculations to use (except for the ”basic” first two, without which we can’t do anything). Thus, we want to make \(q - a \) and \(p - b \) as small as possible, which we can do by making them both equal to \((b - a)/2\). Therefore we take \(q = p = a + (b - a)/2 \).

In practice, we can’t do this exactly because we need \(p < q \), but we can take \(p \) and \(q \) arbitrarily close to this point.

This gives us

\[
F_2(\alpha) = 2\alpha \quad \text{(approximately).} \tag{2}
\]
Also, we can’t reduce the length of the interval at all with zero or one f-calculation, so it is reasonable to let

$$F_0(\alpha) = \alpha$$ \hspace{1cm} (3)

and

$$F_1(\alpha) = \alpha.$$ \hspace{1cm} (4)
Equations (1) define the *Fibonacci sequence*.

The initial conditions are given by (3) and (4). Thus we see that $F_n(\alpha) = F_n \alpha$ where F_n is given by the Fibonacci sequence: $F_0 = 1$, $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$, $F_5 = 8$, $F_6 = 13$, $F_7 = 21$, $F_8 = 34$, $F_9 = 55$, $F_{10} = 89$...
Fibonacci Search Algorithm

To minimise a unimodal function \(f \) over \([a, b]\) to within tolerance \(\epsilon \).

1. Find the smallest value of \(n \) such that \((b - a)/F_n < 2\epsilon \).
2. Set

\[
\begin{align*}
k &= n \\
p &= b - \frac{F_{k-1}}{F_k}(b - a) \\
q &= a + \frac{F_{k-1}}{F_k}(b - a)
\end{align*}
\]

Calculate \(f(p) \) and \(f(q) \).
3. Set \(k = k - 1 \). If \(f(p) \leq f(q) \), then set

\[
\begin{align*}
 b &= q \\
 q &= p \\
 p &= b - \frac{F_{k-1}}{F_k}(b - a)
\end{align*}
\]

Calculate \(f(p) \). If \(f(p) > f(q) \), then set

\[
\begin{align*}
 a &= p \\
 p &= q \\
 q &= a + \frac{F_{k-1}}{F_k}(b - a)
\end{align*}
\]

Calculate \(f(q) \). Repeat until \(k = 3 \).
4. If $f(p) \leq f(q)$, then set

\begin{align*}
 b &= q \\
 q &= p \\
 p &= b - 2\epsilon
\end{align*}

Calculate $f(p)$.

If $f(p) > f(q)$, then set

\begin{align*}
 a &= p \\
 p &= q \\
 q &= a + 2\epsilon
\end{align*}

Calculate $f(q)$.
5. If \(f(p) \leq f(q) \), then \(b = q \).
 If \(f(p) > f(q) \), then \(a = p \).

The final interval is \([a, b]\). This interval has length either \(2\epsilon\) or \(\alpha < 2\epsilon\).