Operations Research Techniques and Algorithms (620-361)

Dr Yao-ban Chan

y.chan@ms.unimelb.edu.au
Telephone: 8344 9073
Office: Room 198, Richard Berry Building

Christina Burt
c.burt@ms.unimelb.edu.au
Telephone: 8344 1797
Office: 139 Barry St

May 9, 2008
We illustrate this result with an example. Consider the nonlinear program

\[
\begin{align*}
\min & \quad x_1^2 + x_2^2 \\
\text{s.t.} & \quad -x_1 - x_2 + 4 \leq 0 \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]

It can be seen by inspection that this NLP has a unique KKT point \(x^* = (2, 2) \) with multipliers \(\lambda^* = (4, 0, 0) \).
Now

\[\phi(x) = L(x, \lambda^*) \]
\[= x_1^2 + x_2^2 + 4(-x_1 - x_2 + 4) + 0(-x_1) + 0(-x_2) \]
\[= x_1^2 + x_2^2 - 4x_1 - 4x_2 + 16. \]

To find the minimum of \(\phi(x) \) over all \(x \), we simply take \(\nabla \phi(x) = 0 \).
\[\nabla \phi(x) = (2x_1 - 4, 2x_2 - 4) = (0, 0). \]

This is solved by \(x = (2, 2) \). Checking that it is in fact a minimum:

\[\nabla^2 \phi(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \]

which is obviously positive definite. Therefore \((2, 2) \) minimises \(L(x, \lambda^*) \), and we see that it is indeed equal to \(x^* \).
Given the previous result, we can ask: if we want to convert a constrained problem to an unconstrained problem, why can't we just minimise the Lagrangian as an unconstrained problem?
Given the previous result, we can ask: if we want to convert a constrained problem to an unconstrained problem, why can’t we just minimise the Lagrangian as an unconstrained problem?

We could — if we knew the optimal KKT multipliers! But we usually don’t.
We have seen that given specific KKT multipliers λ^* and η^*, we can consider the Lagrangian as a function of x alone. In the next theorem, we also do the opposite: given a specific point x^*, we can consider the Lagrangian as a function of λ and η!

Theorem. The triple (x^*, λ^*, η^*) is a KKT point of a convex program if and only if, for all $\lambda \geq 0$ and all x and η,

$$L(x^*, \lambda, \eta) \leq L(x^*, \lambda^*, \eta^*) \leq L(x, \lambda^*, \eta^*).$$
This inequality is known as the Saddle Inequality and the theorem as the saddlepoint theorem.

Note that this result goes two ways: previously, we knew that if \((x^*, \lambda^*, \eta^*)\) is a KKT point, then it minimises the Lagrangian with \(\lambda^*\) and \(\eta^*\) fixed. However, the theorem also tells us that if \(x^*\) minimises the Lagrangian, it is also a KKT point!
Proof. First we consider the forward implication: if \((x^*, \lambda^*, \eta^*)\) is a KKT point, then the Saddle Inequality holds. The second inequality is just the Corollary above, so we already know it to be true.

Since \((x^*, \lambda^*, \eta^*)\) is a KKT point, from KKTb and KKTc we know that

\[
(\lambda^*)^T g(x^*) = 0
\]

and

\[
(\eta^*)^T h(x^*) = 0.
\]
So

\[L(x^*, \lambda^*, \eta^*) = f(x^*) + (\lambda^*)^T g(x^*) + (\eta^*)^T h(x^*) = f(x^*). \]

Now consider any \(\lambda \geq 0 \) and any \(\eta \). Since \(g(x^*) \leq 0 \) by KKTb, we have

\[\lambda^T g(x^*) \leq 0 \]

and

\[\eta^T h(x^*) = 0 \]

from KKTc.
Therefore

\[L(x^*, \lambda, \eta) = f(x^*) + \lambda^T g(x^*) + \eta^T h(x^*) \leq f(x^*) = L(x^*, \lambda^*, \eta^*). \]

This is the left inequality of the Saddle Inequality.
Next we consider the backward implication: if the Saddle Inequality holds then \((x^*, \lambda^*, \eta^*)\) is a KKT point.

The right-hand side of the Saddle Inequality says that \(x^*\) minimises \(L(x, \lambda^*, \eta^*)\) over all \(x\). Therefore, \(x^*\) must be a stationary point of \(L(x, \lambda^*, \eta^*)\), considered as a function of \(x\), and therefore

\[
\nabla_x L(x, \lambda^*, \eta^*) = 0.
\]

This is KKTa.
The left-hand side of the Saddle Inequality says that \((\lambda^*, \eta^*)\) maximises \(L(x^*, \lambda, \eta)\) (considered as a function of \((\lambda, \eta)\)) over all \(\lambda \geq 0\) and all \(\eta\). If you consider the KKT multipliers as variables themselves, we see that this is another optimisation problem:

\[
\begin{align*}
\min\quad & -L(x^*, \lambda, \eta) \\
\text{s.t.}\quad & \lambda \geq 0.
\end{align*}
\]

We denote this problem by (P).
This problem must also have a Lagrangian function, which we denote by $L^P(\lambda, \eta, \alpha)$, where α is the KKT multipliers:

$$L^P(\lambda, \eta, \alpha) = -L(x^*, \lambda, \eta) + \alpha^T (-\lambda)$$
$$= -L(x^*, \lambda, \eta) - \alpha^T \lambda.$$
Since \((\lambda^*, \eta^*)\) solves \((P)\), there must exist KKT multipliers \(\alpha^*\) such that the KKT conditions for \((P)\) hold for the triple \((\lambda^*, \eta^*, \alpha^*)\). For KKTA, this turns out to be

\[
\nabla_{\lambda} L^P(\lambda^*, \eta^*, \alpha^*) = 0
\]

and

\[
\nabla_{\eta} L^P(\lambda^*, \eta^*, \alpha^*) = 0.
\]
For KKTb, this turns out to be

$$-\lambda^* \leq 0, \alpha^* \geq 0, (\alpha^*)^T \lambda^* = 0.$$

Now from the KKTa condition of (P),

$$\nabla_\lambda L^P(\lambda^*, \eta^*, \alpha^*) = -\nabla_\lambda L(x^*, \lambda^*, \eta^*) - \alpha^*$$

$$= -g(x^*) - \alpha^*$$

$$= 0.$$
Therefore
\[g(x^*) = -\alpha^* \leq 0 \]
which is the first KKTb condition for the original program. Also,
\[(\alpha^*)^T \lambda^* = -(g(x^*))^T \lambda^* = -(\lambda^*)^T g(x^*) = 0 \]
which is the third KKTb condition. The second KKTb condition is automatically fulfilled because
\[-\lambda^* \leq 0 \Rightarrow \lambda^* \geq 0. \]
All that remains is to show that KKTc holds. From the KKTa condition of (P),

$$\nabla_\eta L^P(\lambda^*, \eta^*, \alpha^*) = -\nabla_\eta L(x^*, \lambda^*, \eta^*) = -h(x^*) = 0$$

and so this condition holds true too.

We have seen that if the Saddle Inequality holds at a point $$(x^*, \lambda^*, \eta^*)$$, then all the KKT conditions hold for that triple. Thus it is a KKT point and the theorem is proved.
We return to our previous example:

\[
\begin{align*}
\text{min} & \quad x_1^2 + x_2^2 \\
\text{s.t.} & \quad -x_1 - x_2 + 4 \leq 0 \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]

The Lagrangian is

\[
L(x, \lambda) = x_1^2 + x_2^2 + \lambda_1(-x_1 - x_2 + 4) + \lambda_2(-x_1) + \lambda_3(-x_2).
\]
We have already seen that there is a KKT point at $x^* = (2, 2), \lambda^* = (4, 0, 0)$, and furthermore, $(2, 2)$ is a minimiser for the unconstrained function $L(x, (4, 0, 0))$.

Now consider the Lagrangian at x^*, considered as a function of λ only:

$$L(x^*, \lambda) = 4 - 2\lambda_2 - 2\lambda_3.$$
Maximising this over all \(\lambda_1, \lambda_2, \lambda_3 \geq 0 \) is easy: we obviously need \(\lambda_2 = \lambda_3 = 0 \).

This does not give us a value for \(\lambda_1 \), so we cannot solve for the KKT multipliers from this problem alone. However we note that for any value of \(\lambda_1 \), \(L(x^*, \lambda) \) does not change, so we know that

\[
L(x^*, \lambda) \leq L(x^*, (4, 0, 0)),
\]

i.e. that the Saddle Inequality holds.
In fact, from the Theorem, noting that both sides of the Saddle Inequality holds actually proves that \(((2, 2), (4, 0, 0))\) is a KKT point!

Example.

\[
\begin{align*}
\text{min} & \quad x_1^2 + x_2 \\
\text{s.t.} & \quad x_2 \geq 0.
\end{align*}
\]
The Lagrangian is

\[L(x_1, x_2, \lambda) = x_1^2 + x_2 + \lambda(-x_2) = x_1^2 + (1 - \lambda)x_2. \]

We look for all possible values which can solve the Saddle Inequality.

If \(\lambda^* \) has any other value besides 1, minimising the Lagrangian with respect to \(x_1 \) and \(x_2 \) will be an unbounded problem. So for the Saddle Inequality to hold, we need \(\lambda^* = 1 \).
Now we know that $L(x_1, x_2, \lambda^*) = x_1^2$. This clearly has a minimum at $x_1^* = 0$.

We also know that $\lambda^* = 1$ is the minimum of $L(x^*, \lambda)$, which is a linear function of λ, subject to $\lambda \geq 0$. The only way this can occur is if the coefficient of λ is itself 0 (note that this isn’t the case if $\lambda^* = 0$). Therefore $-x_2 = 0$, which means $x_2^* = 0$.
Therefore the only point which satisfies the Saddle Inequality is
((0, 0), 1). From the Theorem, this is a KKT point, and also is the
only KKT point.

Considering that solving the Saddle Inequality for even such a
simple nonlinear program requires a couple of deductive reasonings
(which would be hard to do in a general case), it is obvious that
solving the Saddle Inequality directly is not a very good way to find
the KKT points.

However, it does lead on to some interesting results, which make
things much easier!