Constrained optimisation

Operations Research Techniques and Algorithms (620-361)

Dr Yao-ban Chan

y.chan@ms.unimelb.edu.au
Telephone: 8344 9073
Office: Room 198, Richard Berry Building

Christina Burt
c.burt@ms.unimelb.edu.au
Telephone: 8344 1797
Office: 139 Barry St

Monday 14th April, 2008
Constrained optimisation

Optimality conditions
We now check the constraint qualifications at each of these points. Since in this example, \(h \) is \textit{not} affine, (\(h_1 \) in particular is not affine), the first does not hold, so we look at the constraint gradients at each point. We have

\[
\nabla h_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \\ 0 \end{bmatrix} \quad \text{and} \quad \nabla h_2(x) = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}.
\]
The second constraint qualification is satisfied if these vectors are linearly independent, that is if the matrix

$$\nabla h(x) = \begin{bmatrix} 2x_1 & 2 \\ 2x_2 & 2 \\ 0 & 1 \end{bmatrix}$$

has full column rank, that is has rank 2.
Now

\[\nabla h \left(\begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 1 + 2\sqrt{2} \end{bmatrix} \right) = \begin{bmatrix} -\sqrt{2} & 2 \\ -\sqrt{2} & 2 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -\sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \]

which clearly has rank 2. So the constraint qualification holds at \(x = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 1 + 2\sqrt{2} \right)^T \).
Similarly

\[
\nabla h(\begin{bmatrix}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
1 - 2\sqrt{2}
\end{bmatrix}) = \begin{bmatrix}
\sqrt{2} & 2 \\
\sqrt{2} & 2 \\
0 & 1
\end{bmatrix} \sim \begin{bmatrix}
1 & \sqrt{2} \\
0 & 1 \\
0 & 0
\end{bmatrix}
\]

which also clearly has rank 2. So the constraint qualification holds at \(x = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1 - 2\sqrt{2})^T \) also.
Thus, by Theorem 4, (and since \(f \) and \(h \) are obviously \(C^1 \)), if the NLP has a locally optimal point, it must be one of these two points. To find out more, we need to look at second-order information.
Example.

Write down and solve the first-order necessary conditions for the equality-constrained NLP when \(n = 2, \quad f(x) = x_1^2 + \frac{x_2^2}{4}, \) and \(h(x) = x_1 + x_2 + 1. \)
We prove Theorem 4 for the case $n = 2$, $q = 1$ (one constraint) more formally.

The feasible region must be able to be expressed as a parametric curve $x(t)$, where $x \in \mathbb{R}^n$ and t is a single variable. However, the feasible region is defined as the region $h(x) = 0$. Therefore

$$h(x(t)) = 0 \text{ for all } t.$$
Differentiating this expression by t using the multi-dimensional chain rule gives us

$$\frac{d}{dt} h(x(t)) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} h(x(t)) \frac{d}{dt} x_i(t)$$

$$= \langle \nabla h(x(t)), x'(t) \rangle$$

$$= 0.$$

This shows us that $\nabla h(x(t))$ is orthogonal to $x'(t)$. In particular, if x^* is a local minimum and corresponds to t^* on the parametric curve, we know that $\nabla h(x^*)$ is orthogonal to $x'(t^*)$.
However, because x^* is a local minimum, the one-dimensional function

$$q(t) = f(x(t)),$$

which is the function ‘sliced’ along the feasible region, achieves a minimum at t^*. This implies that $q'(t^*) = 0$. However, again from the chain rule,

$$q'(t) = \frac{d}{dt} f(x(t))$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(x(t)) \frac{d}{dt} x_i(t)$$

$$= \langle \nabla f(x(t)), x'(t) \rangle.$$
This implies that $\langle \nabla f(x(t^*)), x'(t^*) \rangle = 0$, or that $\nabla f(x(t^*))$ and $x'(t^*)$ are orthogonal. But $x'(t^*)$ is also orthogonal to $\nabla h(x^*)$! Therefore $\nabla h(x^*)$ and $\nabla f(x(t^*))$ are parallel (remember we are in two dimensions). This gives

$$\nabla f(x(t^*)) \propto \nabla h(x^*)$$

$$\nabla f(x(t^*)) = -\eta^* \nabla h(x^*)$$

$$\nabla f(x(t^*)) + \eta^* \nabla h(x^*) = 0$$

which, again, is Lagrange’s condition.
As in unconstrained optimization, a stationary point need not be a local or global minimum. However, if we know more, we can conclude that a stationary point is a local or global minimum.

For example, if the objective and constraint functions have particular convexity properties, or if particular second-order properties hold at the stationary point, we can conclude that the stationary point is a global or local minimum respectively. The first of these results is stated in the following theorem.
Theorem 5: If f is C^1 and convex, and h is affine, then a point x^* is stationary for the equality constrained NLP if and only if it is a global minimum.

This is comparable to the unconstrained result which requires f to be C^1 and convex. If the objective function is nonconvex and/or the constraints are nonlinear, then the above result does not hold. In this case we rely on a second order sufficient condition for a stationary point to be a local minimum. This is given in the following theorem.
Let x^* be a stationary point, with a corresponding Lagrange multiplier η^*. Let $\nabla^2_{xx} L(x^*, \eta^*)$ be the Hessian of the Lagrangian with respect to x, that is

$$
\nabla^2_{xx} L(x^*, \eta^*) = \nabla^2 f(x^*) + \sum_{j=1}^{q} \eta^*_j \nabla^2 h_j(x^*).
$$

Define the set of feasible directions at x^* to be

$$
C(x^*) = \{d \in \mathbb{R}^n : d \neq 0, \nabla h(x^*)^T d = 0\}.
$$

$C(x^*)$ is the nullspace (or kernel) of the transpose of the Jacobian $\nabla h(x^*)$.

The next theorem provides a second-order sufficient condition for x^* to be a local minimum.

Theorem 6: If $\nabla^2_{xx} L(x^*, \eta^*)$ is positive definite on $C(x^*)$, that is

if $0 \neq d \in \mathbb{R}^n$, $\nabla h(x^*)^T d = 0$, then $d^T \nabla^2_{xx} L(x^*, \eta^*) d > 0$,

then x^* is a local minimum.

This is analogous to the unconstrained second-order condition which requires $\nabla^2 f(x^*)$ to be positive definite.
Theorem 6 tells us that if the Hessian of the Lagrangian function with respect to the x variables is positive definite in directions which maintain feasibility (in a local sense, at least), then the stationary point must be a local optimum (assuming that f and h are C^2).
Let’s continue with our previous example:

\[
\begin{align*}
\text{min} \quad & f(x) = 2x_1^2 + 2x_2^2 + 4x_1x_2 + x_1x_3 + x_2x_3 \\
\text{s.t.} \quad & h_1(x) = x_1^2 + x_2^2 - 1 = 0 \\
& h_2(x) = 2x_1 + 2x_2 + x_3 - 1 = 0.
\end{align*}
\]

The first sufficient condition (requiring \(f \) to be convex and \(h \) to be affine) does not apply, as \(h \) is not affine.
Let us try the second condition. \(f \) and \(h \) are obviously \(C^2 \). Also we have

\[
\nabla^2_{xx} L(x, \eta) = \begin{bmatrix}
4 + 2\eta_1 & 4 & 1 \\
4 & 4 + 2\eta_1 & 1 \\
1 & 1 & 0
\end{bmatrix}.
\]

Let us consider the stationary point \(x^* = \begin{bmatrix}
-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} \\
1 + 2\sqrt{2}
\end{bmatrix} \) with

Lagrange multipliers \(\eta^* = \begin{bmatrix}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\sqrt{2}
\end{bmatrix} \).
The Hessian of the Lagrangian at this point is

$$
\nabla^2_{xx} L(x^*, \eta^*) = \begin{bmatrix}
4 + \sqrt{2} & 4 & 1 \\
4 & 4 + \sqrt{2} & 1 \\
1 & 1 & 0
\end{bmatrix}.
$$

We wish to know if this is positive definite with respect to the directions which maintain feasibility. This is the nullspace of the transpose of the Jacobian

$$
\nabla h(x) = \begin{bmatrix}
2x_1 & 2 \\
2x_2 & 2 \\
0 & 1
\end{bmatrix}.
$$
Now

\[\nabla h(x^*)^T d = 0 \quad \Rightarrow \quad \begin{bmatrix} -\sqrt{2} & -\sqrt{2} & 0 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[\Rightarrow \quad \begin{cases} -\sqrt{2}d_1 - \sqrt{2}d_2 = 0 \\ 2d_1 + 2d_2 + d_3 = 0 \end{cases} \quad \Rightarrow \quad d_2 = -d_1 \quad \text{and} \quad d_3 = 0 \]

\[\Rightarrow \quad d = \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix} \]

for some \(d_1 \in \mathbb{R} \).
Thus the directions of interest are given by

\[C(x^*) = \{ d \in \mathbb{R}^n : d = \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix}, \text{ for some } d_1 \neq 0 \}. \]

We need to check if \(d^T \nabla^2_{xx} L(x^*, \eta^*) d > 0 \) for all \(d \in C(x^*) \); if so, we can then apply Theorem 6 to deduce that \(x^* \) is a local optimum.
For $d_1 \in \mathbb{R}$, $d_1 \neq 0$, we have

$$(d_1, -d_1, 0)\nabla^2_{xx} L(x^*, \eta^*) \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix}$$

$$= (d_1, -d_1, 0) \begin{bmatrix} 4 + \sqrt{2} & 4 & 1 \\ 4 & 4 + \sqrt{2} & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix}$$

$$= (d_1, -d_1, 0) \begin{bmatrix} \sqrt{2}d_1 \\ -\sqrt{2}d_1 \\ 0 \end{bmatrix}$$

$$= 2\sqrt{2}d_1^2 > 0.$$
Thus $\nabla^2_{xx} L(x^*, \eta^*)$ is positive definite on $C(x^*)$, so the second order sufficiency condition does hold. Therefore the point $x^* = (\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1 + 2\sqrt{2})$ is a local minimum, with Lagrange multipliers $\eta^* = (\frac{1}{\sqrt{2}}, \sqrt{2})$.

What about $x^* = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1 - 2\sqrt{2})$?
The Hessian of the Lagrangian at this point is

\[\nabla^2_{xx} L(x^*, \eta^*) = \begin{bmatrix} 4 - \sqrt{2} & 4 & 1 \\ 4 & 4 - \sqrt{2} & 1 \\ 1 & 1 & 0 \end{bmatrix}. \]

The transpose of the Jacobian at this point is

\[\nabla h(x^*)^T = \begin{bmatrix} \sqrt{2} & \sqrt{2} & 0 \\ 2 & 2 & 1 \end{bmatrix}. \]
Now

\[\nabla h(x^*)^T d = 0 \quad \Rightarrow \quad \begin{bmatrix} \sqrt{2} & \sqrt{2} & 0 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[\Rightarrow \quad \sqrt{2}d_1 + \sqrt{2}d_2 = 0 \]
\[2d_1 + 2d_2 + d_3 = 0 \quad \} \quad \Rightarrow \quad d_2 = -d_1 \quad \text{and} \quad d_3 = 0 \]

\[\Rightarrow \quad d = \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix} \]

for some \(d_1 \in \mathbb{R}. \)
Thus the directions of interest are given by

\[C(x^*) = \{ d \in \mathbb{R}^n : d = \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix}, \text{ for some } d_1 \neq 0 \} \]

We need to check if \(d^T \nabla^2_{xx} L(x^*, \eta^*) d > 0 \) for all \(d \in C(x^*) \); if so, we can then apply Theorem 6 to deduce that \(x^* \) is a local optimum.
For $d_1 \in \mathbb{R}$, $d_1 \neq 0$, we have

$$(d_1, -d_1, 0) \nabla_{xx}^2 L(x^*, \eta^*) \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix}$$

$$= (d_1, -d_1, 0) \begin{bmatrix} 4 - \sqrt{2} & 4 & 1 \\ 4 & 4 - \sqrt{2} & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} d_1 \\ -d_1 \\ 0 \end{bmatrix}$$

$$= (d_1, -d_1, 0) \begin{bmatrix} -\sqrt{2}d_1 \\ \sqrt{2}d_1 \\ 0 \end{bmatrix}$$

$$= -2\sqrt{2}d_1^2$$

$$< 0.$$
Thus $\nabla^2_{xx} L(x^*, \eta^*)$ is certainly not positive definite on $C(x^*)$, so the second order sufficiency condition does not hold, and we cannot deduce that this point is a local optimum. (In fact, $\nabla^2_{xx} L(x^*, \eta^*)$ is negative definite on $C(x^*)$ so x^* is a local maximum.)

Putting this together with the fact that the only other stationary point is a minimum, we deduce that the global minimum of the function lies at the point $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 1 + 2\sqrt{2} \right)$.
Example. Check the second-order conditions for the earlier problem: $n = 2$, $f(x) = x_1^2 + x_2^2/4$, and $h(x) = x_1 + x_2 + 1$.