Weight Distribution of the Bases of a Binary Matroid

S. ZHOU

Department of Mathematics
The University of Western Australia
Nedlands, Perth, WA 6907, Australia
smzhou@maths.uwa.edu.au

(Received and accepted November 1997)

Communicated by F. Harary

Abstract—Let M be a weighted binary matroid and $w_1 < \cdots < w_m$ be the increasing sequence of all possible distinct weights of bases of M. We give a sufficient condition for the property that w_1, \ldots, w_m is an arithmetical progression of common difference d. We also give conditions which guarantee that $w_{i+k} - w_i \leq d, 1 \leq i \leq m - 1$. Dual forms for these results are given also. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords—Matroid, Weight, Arithmetical progression.

1. INTRODUCTION

Let $G = (V(G), E(G))$ be a connected graph and $\mathcal{F}(G)$ the set of spanning trees of G. Let $w : E(G) \rightarrow \mathbb{R}$ be a weight function which associates a real number weight $w(e)$ with each edge $e \in E(G)$. For each $T \in \mathcal{F}(G)$, the weight of T is $w(T) = \sum_{e \in E(T)} w(e)$. Denote all distinct weights of spanning trees of G by $w_1 > \cdots > w_m$. The spanning trees with weight w_i are called the ith maximal spanning trees. For each $T \in \mathcal{F}(G)$ and integer $k, 0 \leq k \leq |V(G)|$, let $L_k(T) = \{ T' \in \mathcal{F}(G) : |T' \setminus T| \leq k \}$. Kano [1], conjectured that for any maximum weight spanning tree A and each i with $1 \leq i \leq k$, $L_k-1(A)$ contains an ith maximal spanning tree of G. He proved [1] that the conjecture is true when w_1, \ldots, w_m is an arithmetical progression. Although the conjecture has been fully proved [2,3], we feel that the problem of when w_1, \ldots, w_m is an arithmetical progression is of interest for its own reason. In this direction, an early result of Hakimi and Maeda [4] says that if the weight $w(e)$ of each edge e is $c, c+d$, or $c+2d$ for some constants c and $d > 0$, then w_1, \ldots, w_m is an arithmetical progression. On the other hand, it seems that we do not know much about the distribution of the weights of spanning trees of a graph, although a lot of combinatorial optimization problems, such as the minimum spanning tree problem, relate closely to the weights of spanning trees. In general, it is difficult to have a detailed understanding of the distribution of the weights of bases of a weighted matroid.

Supported by OPRS of the Australian Department of Education, Employment, and Training and UPA from The University of Western Australia.

I would like to express my sincere thanks to Y. Lin and G. Liu for their valuable comments on a preliminary version of this paper.

Typeset by AAM-T\TeX

15
In this paper, we tentatively give a condition which guarantees that the weights of bases of a weighted binary matroid consist of an arithmetical progression. Also we give a sufficient condition for the property that for each \(i \), the difference of the \((i+1)\)th minimal and the \(i\)th minimal weights does not exceed a constant \(d\). The dual versions of these results are provided.

2. MAIN RESULTS AND THE PROOF

The reader is referred to [5] for terminologies on matroids. Let \(M \) be a matroid on a finite set \(S \) and \(B(M) \) the set of bases of \(M \). For any \(B \in B(M) \) and \(x \in S \setminus B \), \(B \cup \{x\} \) contains a unique circuit \(C(x,B) \), called the fundamental circuit of \(x \) in the base \(B \). Note that \(x \in C(x,B) \).

Lemma 1. (See [5].) Suppose \(B \in B(M), x \in S \setminus B, y \in B \). Then \((B \setminus \{y\}) \cup \{x\} \in B(M) \) if and only if \(y \in C(x,B) \) or \(y = x \).

If for any two distinct circuits \(C_1, C_2 \) of \(M \), the symmetric difference \(C_1 \Delta C_2 \) contains a circuit, then \(M \) is said to be a binary matroid [5]. Note that there are alternative ways to define a binary matroid. We present the following equivalent condition which will be used later.

Lemma 2. (See [5].) \(M \) is a binary matroid if and only if the symmetric difference of any collection of distinct circuits is the union of disjoint circuits of \(M \).

In the following, we always suppose \(M \) is a binary matroid on finite \(S \). For a subset \(X \) of \(S \), the incidence vector of \(X \) is the vector \((i_x)_{x \in X} \) with entries indexed by the elements of \(S \), where \(i_x \) is 1 or 0 depending on whether \(x \) is or is not in \(X \). The circuit space of \(M \), denoted by \(V(M) \), is the vector space over the field \(GF(2) \) generated by the incidence vectors of the circuits of \(M \). We can view the vectors of \(V(M) \) as symmetric differences of some circuits of \(M \) (or equivalently as disjoint union of some circuits). The sum of \(X, Y \in V(M) \) is the symmetric difference \(X \Delta Y \). We call a base of \(V(M) \) a circuit base if each vector in this base is a circuit of \(M \). Note that the dimension of \(V(M) \) is \(\rho = |S| - r \), where \(r = \text{rank}(M) \) is the rank of \(M \).

Let \(w : S \rightarrow \mathbb{R} \) be a weight function, where \(\mathbb{R} \) is the set of real numbers. Thus, \(M \) is a weighted matroid with weight \(w(x) \) for each \(x \in S \). The weight of a base \(B \in B(M) \) is \(w(B) = \sum_{x \in B} w(x) \). A base with maximum weight is said to be a maximum base. Suppose \(w_1 < \cdots < w_m \) is the sequence of all distinct weights of bases of \(M \). In this section, we always suppose that the following condition is satisfied.

Condition. There exists a circuit base \(\mathcal{C} = \{C_1, \ldots, C_{\rho}\} \) of \(V(M) \) such that for each \(C_i \) there exists at most one \(C_j \) with \(C_i \cap C_j \neq \emptyset, j \neq i \).

For the case of a cycle matroid of a graph \(G \), this condition is satisfied when, for example, the cycles of \(G \) are pairwise edge disjoint. We have the following.

Lemma 3.

(i) If \(x_1, \ldots, x_\rho \in S \) satisfy

\[
x_i \in C_i \setminus \bigcup_{j \neq i} C_j, \quad 1 \leq i \leq \rho,
\]

then \(B = S \setminus \{x_1, \ldots, x_\rho\} \in B(M) \) and \(C_i = C(x_i,B) \).

(ii) Conversely, for any \(B \in B(M) \) there exists an order \(x_1, \ldots, x_\rho \) of the elements of \(S \setminus B \) such that (1) is satisfied.

Proof.

(i) Since \(|B| = |S \setminus \{x_1, \ldots, x_\rho\}| = r \), it suffices to show that \(B \) is an independent set. Suppose otherwise, then there exists a circuit \(C \) which is contained in \(B \). Since \(C \) is a base for the vector space \(V(M) \), \(C \) can be expressed as \(C_{i_1} \Delta \cdots \Delta C_{i_k}, 1 \leq i_1 < \cdots < i_k \leq \rho \). From (1) we have \(x_{i_1} \in C \subseteq B \), a contradiction. So \(B \) is an independent set and hence \(B \in B(M) \). By \(C_i \setminus \{x_i\} \subseteq B \), we know \(C_i = C(x_i,B) \).
(ii) We need to prove that there exists a bijection $f : S \setminus B \to C$ such that $x \in f(x)$, $x \notin f(y)$ for any distinct $x, y \in S \setminus B$.

For any $x \in S \setminus B$, let $C(x, B) = C_{i_1} \triangle \cdots \triangle C_{i_k}, 1 \leq i_1 < \cdots < i_k \leq \rho$. From the above-mentioned condition and $x \in C(x, B)$, we know x belongs to exactly one C_{i_k}. Without loss of generality, suppose $x \in C_{i_1} \setminus \bigcup_{i=2}^{k} C_{i_i}$. Set $f(x) = C_{i_1}$. In this way, we define a mapping f from $S \setminus B$ to C. For $y \in S \setminus B, y \neq x$, let $C(y, B) = C_{j_1} \triangle \cdots \triangle C_{j_l}, 1 \leq j_1 < \cdots < j_l \leq \rho$. Also, we may suppose $y \in C_{j_1} \setminus \bigcup_{i=2}^{l} C_{j_i}$. Then $f(y) = C_{j_1}$. Now we prove

$$f(x) \neq f(y)$$

and

$$x \notin f(y).$$

If these are achieved, then from (2), we know f is injective and hence bijective since $|S \setminus B| = |C|$, and from (3), we get (1).

Let us prove (2) first. Suppose to the contrary that $f(x) = f(y)$, i.e., $C_{i_1} = C_{j_1}$. Then $k, l \geq 2$. In fact, if $k = 1$, then from $y \in C_{j_1}$, $C_{i_1} = C(x, B)$ we know $y \in C(x, B) \setminus \{x\} \subset B$, a contradiction. Similarly, $l \geq 2$. Since $y \notin C(x, B)$ but $y \in C_{i_1}$, there exists, say, C_{i_2} which contains y. From the above-mentioned condition, we have $y \notin \bigcup_{i=3}^{k} C_{i_i}$. Similarly, we can suppose $x \in C_{j_2}$ and $x \notin \bigcup_{i=3}^{l} C_{j_i}$. Note that $C_{i_1} \neq C_{i_2}, C_{j_2}$, but $C_{i_1} \cap C_{i_2} \neq \emptyset, C_{i_1} \cap C_{j_2} \neq \emptyset$. This contradicts the hypothesis of the condition, and hence, (2) follows.

Now, we prove (3). If $x \in f(y) = C_{j_1}$, then there exists exactly one C_{i_1} such that $x \in C_{i_1}, t \geq 2$. Without loss of generality, we suppose $x \in C_{j_2}$. Then we must have $C_{i_1} = C_{j_2}$, since otherwise, the pairwise distinct $C_{i_1}, C_{j_1}, C_{j_2}$ will have a common element x, violating the hypothesis in the condition. We claim that there exist no x with $x \in C_{j_1} \setminus B, x \neq x, y$. Suppose otherwise, then by $y \notin C(x, B)$ and by the condition, we know there exists a unique C_{j_2} with $x \in C_{j_2}, t \geq 2$. If $t > 2$, then C_{i_1} has nonempty intersection with both C_{j_2} and C_{j_1}, a contradiction. So we have $t = 2$. That is, $x \in C_{j_1} = C_{i_1}$. But $x \notin C(x, B)$, so there exists a unique C_{i_2} with $x \in C_{i_2}, s \geq 2$. Note that $C_{i_2} \neq C_{j_1}$, for otherwise x will be in C_{j_1}. Thus, C_{j_1} has nonempty intersection with C_{i_1} and C_{i_2}, which contradicts the condition. So there exist no x with $x \in C_{j_1} \setminus B, x \neq x, y$, and hence, $C(x, B) \Delta C(y, B) \Delta C_{j_1} \subset B$. But M is binary implies that $C(x, B) \Delta C(y, B) \Delta C_{j_1}$ is the union of disjoint circuits. So the base B must contain circuits. This contradiction completes the proof of (3) and hence of Lemma 3.

Lemma 4. Suppose $B \in B(M)$ and $S \setminus B = \{x_1, \ldots, x_p\}$ satisfies (1). Then B is a maximum base if and only if for each i is a minimum weight element in $C_{i_1}, 1 \leq i \leq \rho$.

Proof. Suppose x_i is not a minimum weight element of C_{i_1} for some i. Then there exists $y_i \in C_{i_1} \setminus \{x_i\}$ with $w(y_i) < w(x_i)$. By Lemma 3, we have $C_{i_1} = C(x_i, B)$, and hence, $(B \setminus \{y_i\}) \cup \{x_i\} \in B(M)$. B is not a maximum base since $w((B \setminus \{y_i\}) \cup \{x_i\}) = w(B) - w(y_i) + w(x_i) > w(B)$.

Conversely suppose each x_i is a minimum weight element in C_{i_1}. By Lemma 3, for any $B' \in B(M)$, the elements of $S \setminus B'$ can be ordered as x_1', \ldots, x_p' such that $x_i \in C_{i_1} \setminus \bigcup_{j \neq i} C_{j_1}$. Since $w(x_i) \leq w(x_i'), 1 \leq i \leq \rho$, we have $w(B') = w(B) + \sum_{i=1}^{p} (w(x_i) - w(x_i')) \leq w(B)$, and hence, B is a maximum base. This completes the proof of Lemma 4.

For a circuit C of M, let $c_1 < \cdots < c_n$ be all distinct weights of elements of C. If c_1, \ldots, c_n is an arithmetical progression with common difference d, for some real number $d > 0$, then C is said to satisfy the d-condition. If $c_{i+1} - c_i \leq d, 1 \leq i \leq n - 1$, then we say C satisfies the d^*-condition. We have the following lemma.

Lemma 5. Suppose $B \in B(M)$ is not a maximum base. Then

(i) if each C_{i_1} satisfies the d-condition, $1 \leq i \leq \rho$, then there exists $B' \in B(M)$ such that $w(B') = w(B) + d$;

(ii) if each C_{i_1} satisfies the d^*-condition, $1 \leq i \leq \rho$, then there exists $B' \in B(M)$ such that $w(B) < w(B') \leq w(B) + d$.
Proof. By Lemma 3, we can suppose $S \setminus B = \{x_1, \ldots, x_\rho\}$ satisfies (1) and $C_i = C(x_i, B), 1 \leq i \leq \rho$. If each C_i satisfies the d-condition, then by Lemma 4 and the assumption that B is not a maximum base, we know there exist C_i and $x'_i \in C_i \setminus \{x_i\}$ such that $w(x'_i) = w(x_i) - d$. By Lemma 1, $B' = (B \setminus \{x'_i\}) \cup \{x_i\} \in B(M)$. The weight of B' is $w(B') = w(B) - w(x'_i) + w(x_i) = w(B) + d$. In a similar way, one can prove (ii).

From Lemma 5, we get our main result.

Theorem 1. Suppose S, M, w, w_i are as before and d is a positive number. Suppose there exists a circuit base $C = \{C_1, \ldots, C_\rho\}$ of $V(M)$ which satisfies the condition.

(i) If each C_i satisfies the d-condition, then w_1, \ldots, w_m is an arithmetical progression with common difference d.

(ii) If each C_i satisfies the d^2-condition, then $0 < w_{i+1} - w_i \leq d$, $1 \leq i \leq m - 1$.

An integer interval is a set of consecutive integers. From Theorem 1, we have the following.

Corollary 1. Suppose M is a binary matroid on S and there exists a circuit base C of $V(M)$ which satisfies the condition. If w is an integer-valued weight function defined on S such that the weights of the elements in each C_i consist of an integer interval, then the weights of the bases of M also consist of an integer interval.

3. DUAL THEOREM

The cocircuit space $V^*(M)$ of M is the vector space over $GF(2)$ generated by the incidence vectors of the cocircuits of M. The dimension of $V^*(M)$ is r. A base C^*_1, \ldots, C^*_r of $V^*(M)$ is said to be a cocircuit base if each C^*_i is a cocircuit of M. Let $B^*(M)$ be the set of cobases of M. The weight of a cobase B^* is $w(B^*) = \sum_{x \in B^*} w(x)$. Let $w^*_1 < \cdots < w^*_m$ be all the possible distinct weights of cobases of M. From Theorem 1 and the duality principle [5] for matroids, we get the following.

Theorem 2. Suppose S, M, w, w^*_i are as before and d is a positive number. Suppose there exists a cocircuit base $C^* = \{C^*_1, \ldots, C^*_r\}$ of $V^*(M)$ such that each C^*_i has nonempty intersection with at most one $C^*_j, j \neq i$.

(i) If each C^*_i satisfies the d-condition, then w^*_1, \ldots, w^*_m is an arithmetical progression with common difference d.

(ii) If each C^*_i satisfies the d^2-condition, then $0 < w^*_{i+1} - w^*_i \leq d$, $1 \leq i \leq m - 1$.

Corollary 2. Suppose M is a binary matroid on S and there exists a cocircuit base $C^* = \{C^*_1, \ldots, C^*_r\}$ of $V^*(M)$ such that each C^*_i intersects at most one other C^*_j. If w is an integer-valued weight function for M such that the weights of the elements in each C^*_i consist of an integer interval, then the weights of the cobases of M also consist of an integer interval.

In particular, the corollaries of Theorems 1 and 2 are valid for the cycle and cocycle matroids of a graph since they are both binary.

References