Divide & Conquer Algorithms.

Often we solve problems by
- breaking up into subproblems of some kind
- solving each subproblem
- combining results to get final answer

This strategy => 'Divide and Conquer Algorithm'

q: Binary search

\[T(n) = T\left(\frac{n}{2}\right) + 1 \]

\[T(n) = \text{work required to sort the list of } n \text{ elements} \]

A recurrence relation.

- \(T(n) \) is work required to sort a list of size \(n \).
- \(T(n) = T\left(\frac{n}{2}\right) + 1 \) for \(n > 1 \), base case when \(n = 1 \).

In general, D&C algorithms have recurrences like

\[T(n) = a T\left(\frac{n}{b}\right) + c n^i \]

In general, \(T(n) \) is a complicated function of \(n \), but behaves roughly if \(n \rightarrow \infty \).

- We need enough to find the asymptotic complexity.

If we define

\[T(0) = T(1) = t_j \]

\[T(n) = T(\frac{n}{2}) + t_j \]

\[t_j = a t_{j-1} + c b^i \]

Where: const. coeff., order linear difference eq.

From above,

\[t_0 = a \]

\[t_j = \frac{a^j + c b^i j}{a^j - c b^i} \]

Suppose \(a > b \) so \(1 + x + x^2 + \ldots + x^{a-1} = \frac{1 - x^a}{1 - x} \)

\[t_j = a^j + c b^i \frac{a^j - c b^i}{a^j - c b^i} \]

\[= \frac{a^j + c b^i (a^j - b^i)}{a - b^i} \]
1. \(T(n) = T(n/2) + c \)
\[b = 2, a = 1, c = 0 \]
\[\Rightarrow a + 1 = b \cdot c = 2 \]
\[\Rightarrow T(n) \sim n \log_2 n \]

2. \(\max/\min \)
\[T(n) = 2 \cdot T(n/2) + c \]
\[b = 2, a = 2, c = 0 \]
\[\Rightarrow a > b \]
\[\Rightarrow T(n) \sim n \log_2 n \]

3. Merge sort
\[T(n) = 2 \cdot T(n/2) + n \]
\[b = 2, a = 2, c = 1 \]
\[\Rightarrow a = b \]
\[\Rightarrow T(n) \sim n \log_2 n \]

\[\text{Summary (w/ other cases)} \]
\[a = b \]
\[T(n) \sim n \text{ undefined} \]
\[a < b \]
\[T(n) \sim n \]
\[a > b \]
\[T(n) \sim n \log_2 n \]

\[\text{Matrix multiplication} \]

Given two \(n \times n \) matrices \(A, B \)

Form \(C = AB \)

Standard algorithm
\[C_{ij} = \sum_k A_{ik} B_{kj} \]
\[\sim n^2 \text{ elements} \]
\[\sim n^3 \text{ multiplications} \]

To avoid \(\Theta(n^3) \) algorithm?

Split each matrix into submatrices of size \(\frac{\sqrt{n}}{2} \times \frac{\sqrt{n}}{2} \)

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \quad C = \ldots \]

\[\begin{align*}
C_{11} &= A_{11} B_{11} + A_{12} B_{21} \\
C_{12} &= A_{11} B_{12} + A_{12} B_{22} \\
C_{21} &= A_{21} B_{11} + A_{22} B_{21} \\
C_{22} &= A_{21} B_{12} + A_{22} B_{22}
\end{align*} \]

\[\Rightarrow \text{need } 8 \times \frac{\sqrt{n}}{2} = \frac{2n^{3/2}}{2} \text{ adds to form } C \]

\[\text{However, } \]
\[G(7) = \begin{align*}
C_{11} &= P + S - T + V \\
C_{12} &= R + T \\
C_{21} &= Q + S \\
C_{22} &= P + R - Q + U
\end{align*} \]
so now
\[T(n) = \frac{1}{7} T\left(\frac{n}{7}\right) + Cn^2 \]
\[b = 7, \ a = 7, \ c = 2 \]
\[\alpha > \beta^2 \]
\[\Rightarrow T(n) \sim n^{\log_7 2} = n^{0.78} = 2.81 \]
so asymptotically (for large n)

This will be faster than the standard way

\[\lim_{n \to \infty} \frac{Cn^2}{n^{2.81}} = 0 \quad \forall \ C > 0 \]

Notes
1. Can prove that you can't enforce on this by solving the subproblems.
2. Current world record in
\[T(n) = Cn \quad n \approx 1.496 \]
but a C is too large it's not a practical algorithm
3. Need to know the constant with the best test if algorithm is useful