Lab sheet 6. More linear systems

1 Fitting a line....

Run the demo ShowLSFit.m to see two linear fits to the square root function. With 2 points, it is just the linear interpolant. With 100 points, we have a fitting problem. Note the use of the Matlab backslash command - if the matrix is rectangular, Matlab automatically solves the least squares problem (using QR factorization). I’m not sure if Matlab uses Householder transformations or not.

2 Normal equations

Use Matlab to Choleski factorize the normal equations arising from the matrix

\[
A = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 - \eta
\end{bmatrix}
\]

where \(\eta = 10^{-10} \). Examine \(A^T A \) and explain what’s going on. Experiment for other values of \(\eta \).

What happens if you QR factorize instead?

3 Normal equations and conditioning

Generate some matrices (not necessarily square) e.g. using \texttt{rand}, \texttt{hilb}, \texttt{pascal} etc. Find their condition numbers (use \texttt{cond}), form \(A^T A \) and check its condition number.

4 See QR

The M-file ShowQR.m illustrates how QR factorization works to produce a triangular matrix R. The actual code given uses a different procedure called Givens rotations rather than Householder transformations but the idea is the same.

5 Conditioning of least squares problems

The sensitivity of least squares problems is rather subtle but can roughly be stated as:

\[
\frac{\| \hat{x} - x \|_2}{\| x \|_2} \approx \epsilon_{mach} (\text{cond}_2(A) + \| Ax - b \|_2 \text{cond}_2(A)^2)
\]

This illustrated in the scriptfile ShowLSq.m - try the values \(m = 10, n = 4, \text{cond} = 10^7 \).
6 Row operations are not for least squares

Use Matlab’s forward slash to solve the overdetermined system

\[
\begin{bmatrix}
1 & 0 \\
2 & 1 \\
3 & 0
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
=
\begin{bmatrix}
1 \\
3 \\
5
\end{bmatrix}
\]

and find the residual (in the 2-norm). Now by hand reduce the system to reduced row echelon form (i.e. using row operations) and solve the resulting overdetermined system. Compare the answers and residuals with your first answers. This shows that row operations do not preserve the solution of a least squares problem.

7 What’s so good about orthogonal matrices?

Show (mathematically) that

a. the 2-norm of the residual of an overdetermined system is unchanged by an orthogonal transformation

b. the Householder matrix \(P = I - 2 \frac{vv^T}{v^Tv} \) where \(v \) is any vector , is symmetric and orthogonal

8 Semantics

Explain the quote (Trefethen and Bau, Numerical Linear Algebra):

Gram-Schmidt is triangular orthogonalization; QR is orthogonal triangularization.