1. Let G be a graph. A set $S \subseteq V(G)$ is a *stable set* if no edge of G has both endpoints in S. Let \mathcal{J} be the set of all stable sets in G. Then $(V(G), \mathcal{J})$ is an independence system. Why? Give an example of a graph G such that $(V(G), \mathcal{J})$ is not a matroid.

Note that the problem: “given a graph G and an integer k, does G contain a stable set of size at least k” is NP-complete. Why is this relevant to the first question?

2. Let G be a graph. Let \mathcal{J} be the set of all matchings in G. Then $(E(G), \mathcal{J})$ is an independence system. Why? Give an example of a graph G such that $(E(G), \mathcal{J})$ is not a matroid.

3. Jobs labelled 1, 2, \ldots, n are to be processed by a single machine. All jobs require the same processing time. Each job j has a deadline d_j and a profit c_j, which will be earned if the job is completed by its deadline. Develop a polynomial time algorithm that will find the ordering of the jobs that maximises total profit. Prove the correctness of your algorithm.

Hint #1: First, prove that if X is a subset of the jobs that can be completed on time, then the jobs in X will be completed on time if the jobs in X are processed in the order of their deadlines.

Hint #2: Prove that $\{(1, 2, \ldots, n), \mathcal{J}\}$ is a matroid, where

$$\mathcal{J} = \{X \subseteq \{1, 2, \ldots, n\} : \text{every job in } X \text{ can be completed on time}\}.$$

Solve the following scheduling problem. The machine is available from 12 noon. Each job takes one hour.

<table>
<thead>
<tr>
<th>job j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>profit c_j</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>deadline d_j</td>
<td>3pm</td>
<td>1pm</td>
<td>2pm</td>
<td>1pm</td>
<td>2pm</td>
<td>5pm</td>
<td>5pm</td>
<td>4pm</td>
<td>2pm</td>
<td>6pm</td>
</tr>
</tbody>
</table>

4. (Challenging) Let G be a graph, such that each edge of G is assigned a colour. Characterise when G has a spanning tree with all its edges coloured differently. That is, prove a theorem that says G has a spanning tree with all its edges coloured differently if and only if

Hint #1: Suppose that G has a spanning tree T with all its edges coloured differently. Let F be the union of any set of p colour classes in G. If $G - F$ has ℓ connected components, then there are at least $\ell - 1$ edges in $T \cap F$ that connect the connected components of $G - F$. Why? Since all the edges in $T \cap F$ are coloured differently, $p \geq \ell - 1$. Is this necessary condition also sufficient?

Hint #2: Apply the Matroid Intersection Theorem, where one matroid is the cycle matroid of G, and the other is the partition matroid determined by the given edge colouring.