
No solutions to these problems need be handed in for assessment.

1. For each of the following 2×2 contingency tables, we wish to test the hypothesis that A and B are independent against the alternative that they are positively related. Find a P-value in each case and state your conclusion:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>A'</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>A'</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Why are the conclusions different even though the proportions are the same?

2. Consider the following sample of $n = 100$ observations on T, the time in hours between computer terminal breakdowns. Let m denote the median of T.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>9</th>
<th>10</th>
<th>14</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>60</td>
<td>64</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>67</td>
<td>69</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>81</td>
<td>87</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>93</td>
<td>100</td>
<td>100</td>
<td>111</td>
<td>115</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>122</td>
<td>127</td>
<td>133</td>
<td>145</td>
<td>148</td>
<td>149</td>
<td>156</td>
<td>162</td>
</tr>
<tr>
<td>172</td>
<td>173</td>
<td>178</td>
<td>185</td>
<td>197</td>
<td>211</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>253</td>
</tr>
<tr>
<td>255</td>
<td>257</td>
<td>259</td>
<td>260</td>
<td>261</td>
<td>263</td>
<td>271</td>
<td>271</td>
<td>288</td>
<td>308</td>
</tr>
<tr>
<td>328</td>
<td>331</td>
<td>340</td>
<td>344</td>
<td>358</td>
<td>385</td>
<td>390</td>
<td>392</td>
<td>419</td>
<td>424</td>
</tr>
<tr>
<td>431</td>
<td>467</td>
<td>470</td>
<td>585</td>
<td>587</td>
<td>605</td>
<td>647</td>
<td>648</td>
<td>659</td>
<td>987</td>
</tr>
</tbody>
</table>

(a) Find the sample median, \hat{m}.
(b) Test the hypothesis that $m = 100$ against a two-sided alternative.
(c) Find a two-sided 95% confidence interval for m.

3. It is claimed that the reaction times for group A subjects are less that those for group B. To test this claim, the following observations were obtained:

<table>
<thead>
<tr>
<th>Group A</th>
<th>173</th>
<th>249</th>
<th>287</th>
<th>302</th>
<th>282</th>
<th>497</th>
<th>312</th>
<th>280</th>
<th>593</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group B</td>
<td>292</td>
<td>284</td>
<td>873</td>
<td>273</td>
<td>322</td>
<td>353</td>
<td>331</td>
<td>299</td>
<td>764</td>
<td>349</td>
</tr>
</tbody>
</table>

(a) Use a rank sum test to test this claim.
(b) Why is it inadvisable to use a t-test for these data?

4. The following table gives the average number of hours per month lost due to accidents in each of eight factories over a period of one year before and after the introduction of an industrial safety programme.

<table>
<thead>
<tr>
<th>factory</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>before</td>
<td>49</td>
<td>79</td>
<td>25</td>
<td>20</td>
<td>140</td>
<td>58</td>
<td>89</td>
<td>62</td>
</tr>
<tr>
<td>after</td>
<td>29</td>
<td>62</td>
<td>29</td>
<td>5</td>
<td>94</td>
<td>50</td>
<td>86</td>
<td>40</td>
</tr>
</tbody>
</table>

Do these observations represent significant evidence that the safety programme has had an effect?

5. Fifteen individuals are randomly divided into three groups of five. The first group is given treatment A, the second treatment B and the third group is a control group and is given no treatment. The results obtained are as follows:

group 1 (treatment A)	36	38	35	34	37
group 2 (treatment B)	31	35	39	32	33
group 3 (control group)	28	22	29	24	27

Carry out a distribution-free test of the null hypothesis that the three samples are drawn from the same population.