Comparison of two normal populations

<table>
<thead>
<tr>
<th>population</th>
<th>sample</th>
<th>X_1</th>
<th>$X_{11}, X_{12}, \ldots, X_{1n_1}$</th>
<th>\bar{X}_1</th>
<th>S_1^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 \sim N(\mu_1, \sigma_1^2)$</td>
<td>$X_2 \sim N(\mu_2, \sigma_2^2)$</td>
<td>$X_1, X_{21}, X_{22}, \ldots, X_{2n_2}$</td>
<td>\bar{X}_2</td>
<td>S_2^2</td>
<td></td>
</tr>
</tbody>
</table>

We wish to make comparisons between μ_1 and μ_2; and (less often) between σ_1^2 and σ_2^2.

F-distribution (Notes 202=p83)

Definition: If $U_1 \overset{d}{=} \chi^2_{\nu_1}$, $U_2 \overset{d}{=} \chi^2_{\nu_2}$ and $U_1 \ & U_2$ are independent, then $Z = \frac{U_1/\nu_1}{U_2/\nu_2} \overset{d}{=} F_{\nu_1,\nu_2}$

(F-distribution with ν_1 and ν_2 degrees of freedom)

![pdf of F-distribution](image)

Note: [1] $E(F_{\nu_1,\nu_2}) = \frac{\nu_2}{\nu_2 - 2}$; [2] $\frac{1}{Z} = \frac{U_2/\nu_2}{U_1/\nu_1} \overset{d}{=} F_{\nu_2,\nu_1}$

Inverse cdf of F-distribution is tabulated: (Notes 202=pp246-247)

$Z \overset{d}{=} F_{8,12} \Rightarrow \Pr(Z < 2.85) = 0.95$, & $\Pr(Z < 4.50) = 0.99$

$\frac{1}{Z} \overset{d}{=} F_{12,8} \Rightarrow \Pr(\frac{1}{Z} < 3.28) = 0.95 \Rightarrow \Pr(Z > 0.305) = 0.95$

Therefore, $\Pr(0.305 < Z < 2.85) = 0.90$

and similarly, $\Pr(0.238 < Z < 3.51) = 0.95$.

Lower quantiles can be obtained using $c_q(F_{\nu_2,\nu_1}) = 1/c_{1-q}(F_{\nu_1,\nu_2})$; so only the upper quantiles are tabulated.

In MINITAB and EXCEL F-quantiles are easily obtained.

Application of the F-distribution: comparison of variances

If $\frac{(n_1 - 1)S_1^2}{\sigma_1^2} \overset{d}{=} \chi^2_{n_1 - 1}$, $\frac{(n_2 - 1)S_2^2}{\sigma_2^2} \overset{d}{=} \chi^2_{n_2 - 1}$, and independent

then $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \overset{d}{=} F_{n_1 - 1, n_2 - 1}$

This result can be used for inference on the variance ratio: $\frac{\sigma_1^2}{\sigma_2^2}$
example \(n_1 = 9, n_2 = 13: \) \(\frac{S_1^2}{\sigma_1^2} \overset{d}{=} F_{8,12} \)

\[\begin{align*}
\therefore \Pr & \left(0.238 < \frac{S_1^2}{\sigma_1^2} \frac{S_2^2}{\sigma_2^2} < 3.51 \right) = 0.95 \\
\therefore \Pr & \left(0.238 \frac{S_1^2}{S_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < 3.51 \frac{S_2^2}{S_1^2} \right) = 0.95 \\
\therefore \Pr & \left(0.284 \frac{S_1^2}{S_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < 4.20 \frac{S_2^2}{S_1^2} \right) = 0.95
\end{align*} \]

which specifies a confidence interval for the ratio of the variances.

example Construct a test of size 0.05 for \(H_0: \sigma_1^2 = \sigma_2^2 \) against \(H_1: \sigma_1^2 \neq \sigma_2^2 \) using samples of \(n_1 = 25 \) and \(n_2 = 10 \).

decision rule: reject \(H_0 \) unless \(a < \frac{S_1^2}{S_2^2} < b \)
distribution: \(\frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \overset{d}{=} F_{24,9} \)

size = 0.05: \(\Pr \left(a < \frac{S_1^2}{S_2^2} < b \mid \sigma_1^2 = \sigma_2^2 \right) = 0.95 \)

So, reject \(H_0 \) unless 0.371 < \(\frac{S_1^2}{S_2^2} < 3.61 \).

Comparison of means

1. **variances known**

\[\bar{X}_1 - \bar{X}_2 \overset{d}{=} N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right) \]

So, this is equivalent to \(Y \overset{d}{=} N(\mu, \frac{\sigma^2}{n_0}) \), where \(\sigma^2 \) is known, which is a simple problem that we know how to solve.

example \(n_1 = 25 \quad \bar{x}_1 = 11.43 \quad (\sigma_1^2 = 4.0) \)

\(n_2 = 10 \quad \bar{x}_2 = 9.74 \quad (\sigma_2^2 = 2.5) \)

Then we have \(X_1 - X_2 \overset{d}{=} N(\mu_1 - \mu_2, 0.41) \);
and so a 95% CI for \(\mu_1 - \mu_2 \) is \(1.69 \pm 1.96\sqrt{0.41} \),
i.e. \(0.43 < \mu_1 - \mu_2 < 2.95 \)

exercise Check that a test of size 0.01 for these samples to test \(H_0: \mu_1 = \mu_2 \) vs \(H_1: \mu_1 \neq \mu_2 \) is given by:

“reject \(H_0 \) if \(|\bar{x}_1 - \bar{x}_2| > 1.65 \).”

It is not often that the variances are known, but this result is useful as a large sample approximation:

\[\begin{align*}
X_1 & \overset{d}{=} \text{Bi}(100, \theta_1) \quad \Rightarrow \quad \frac{X_1}{100} \approx N \left(\theta_1, \frac{\theta_1(1 - \theta_1)}{100} \right) \\
X_2 & \overset{d}{=} \text{Bi}(60, \theta_2) \quad \Rightarrow \quad \frac{X_2}{60} \approx N \left(\theta_2, \frac{\theta_2(1 - \theta_2)}{60} \right)
\end{align*} \]

Thus an approximate 95% CI for \(\theta_1 - \theta_2 \) is given by

\[\hat{\theta}_1 - \hat{\theta}_2 \pm 1.96 \sqrt{\frac{\hat{\theta}_1(1 - \hat{\theta}_1)}{100} + \frac{\hat{\theta}_2(1 - \hat{\theta}_2)}{60}}. \]

For example if \(x_1 = 54 \) and \(x_2 = 27 \), so that \(\hat{\theta}_1 = 0.54 \) and \(\hat{\theta}_2 = 0.45 \), then the 95% CI is \(-0.07 < \theta_1 - \theta_2 < 0.25 \).
2. variances unknown but equal
\[\frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \overset{d}{=} N(0, 1) \]

By analogy with the one sample case, we might hope that replacement of \(\sigma \) by \(S \) would result in a \(t \) distribution.

But what \(S \)? . . . and what \(t \)?
\[\frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \overset{d}{=} t_{n_1+n_2-2} \]

where \(S^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2} \)

example \(n_1 = 25 \) \(\bar{x}_1 = 11.43 \) \(s_1^2 = 3.79 \)
\(n_2 = 10 \) \(\bar{x}_2 = 9.74 \) \(s_2^2 = 2.21 \)
Test the hypothesis \(H_0: \mu_1 = \mu_2 \) vs \(H_1: \mu_1 \neq \mu_2 \)

Assumptions:
1. samples random (iidrvs)
2. samples independent
3. populations normally distributed
4. population variances equal

test statistic: \(T = \frac{\bar{X}_1 - \bar{X}_2}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \)

decision rule: reject \(H_0 \) if \(|T| > c \)
distribution:
\[\frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \overset{d}{=} t_{n_1+n_2-2} \]

thus \(H_0 \Rightarrow T \overset{d}{=} t_{n_1+n_2-2} \)

size = 0.05 \(\Rightarrow \) \(Pr(|T| > c \mid H_0) = 0.05 \)
and \(H_0 \Rightarrow T \overset{d}{=} t_{33} \), so \(c = c_{0.975}(t_{33}) = 2.034 \).

Thus the test is to reject \(H_0 \) if \(|T| > 2.034 \).

The observations give \(t = \frac{1.69}{1.833 \times 0.3742} = 2.464 \),
and so we reject \(H_0 \).

Alternatively, \(P = 2 \Pr(t_{33} > 2.464) \approx 0.02 \).

3. Variances unknown and unequal
\[\frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \overset{d}{=} t_k, \]

where \(\min(n_1 - 1, n_2 - 1) \leq k \leq n_1 + n_2 - 2. \)

The formula for \(k \) is given in the notes: p.76.

(Note: It is simply obtained by finding \(k \) such that \(\chi^2_k \) has the same mean and variance as \(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} \).)
MINITAB implementation:

MTB > TWOSAMPLE C1 C2;
SUBC> POOL.

If the POOL subcommand is used the pooled variance estimate is used — on the assumption that the population variances are equal.
If no subcommand is used the variances are assumed unequal and the above approximate test is used.

Comparison of means of \(k \) normal populations

<table>
<thead>
<tr>
<th>population</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1 \overset{d}{=} N(\mu_1, \sigma^2))</td>
<td>(X_{11}, X_{12}, \ldots, X_{1n})</td>
</tr>
<tr>
<td>(X_2 \overset{d}{=} N(\mu_2, \sigma^2))</td>
<td>(X_{21}, X_{22}, \ldots, X_{2n})</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(X_k \overset{d}{=} N(\mu_k, \sigma^2))</td>
<td>(X_{k1}, X_{k2}, \ldots, X_{kn})</td>
</tr>
</tbody>
</table>

Note 1: we assume equal variances
Note 2: for now, we assume equal sample sizes.

Test \(H_0: \mu_1 = \mu_2 = \cdots = \mu_k \) vs \(H_1: H_0 \).

| \(X_i \overset{d}{=} N(\mu_i, \sigma^2) \) | \(\bar{X}_i \overset{d}{=} N(\mu_i, \frac{\sigma^2}{n}) \) | \(\frac{(n-1)S_i^2}{\sigma^2} \overset{d}{=} \chi_{n-1}^2 \) |
| \hline |
| If \(H_0 \) true, then: |
| \(X \overset{d}{=} N(\mu, \sigma^2) \) | \(\bar{X} \overset{d}{=} N(\mu, \frac{\sigma^2}{N}) \) | \(\frac{(N-1)S_T^2}{\sigma^2} \overset{d}{=} \chi_{N-1}^2 \) |
| \(\bar{X} \overset{d}{=} N(\mu, \frac{\sigma^2}{n}) \) | \(\bar{X} \overset{d}{=} N(\mu, \frac{\sigma^2}{N}) \) | \(\frac{(N-1)S_T^2}{\sigma^2} \overset{d}{=} \chi_{N-1}^2 \) |

So, we have:

- total SS \(T = (N-1)S_T^2 \overset{d}{=} \sigma^2 \chi_{N-1}^2 \) \(H_0 \)
- within SS \(W = \sum (n-1)S_i^2 \overset{d}{=} \sigma^2 \chi_{N-k}^2 \) always
- between SS \(B = n(k-1)S_B^2 \overset{d}{=} \sigma^2 \chi_{k-1}^2 \) \(H_0 \)

Further, we find that: \(T = W + B \)

“Analysis of variance”: the variance is analysed into two components — one attributable to within group spread and the other to the between group spread (the spread of the means).

\(H_0 \) true:

\(\bullet _ _ _ _ _ _ _ _ _ _ _ _ _ \) [1] \(\bullet _ _ _ _ _ _ _ _ _ _ _ _ _ \)

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [2] \(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \)

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [3]

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [4]

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [5]

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [6]

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [7]

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [8]

\(_ _ _ _ _ _ _ _ _ _ _ _ _ _ \) [9]

We see that if \(H_0 \) is not true then both \(B \) & \(T \) tend to be larger.
We have \(T = W + B \)
and if \(H_0 \) true, then:
\[
\sigma^2 \chi^2_{N-1} = \sigma^2 \chi^2_{N-k} + \sigma^2 \chi^2_{k-1}
\]
Hence, if \(H_0 \) is true then
\[
F = \frac{B/(k-1)}{W/(N-k)} \Rightarrow F_{k-1,N-k}
\]
and if \(H_0 \) is not true then \(F \) tends to be large.

Thus a test of \(H_0 \) is given by the decision rule: reject \(H_0 \) if \(F > c \)
If this test is to have size = 0.05, then \(c = c_{0.95}(F_{k-1,N-k}) \)

Despite the ad hoc way in which the test has been derived here, it is in fact the best test of this null hypothesis: it is the Likelihood Ratio Test for this situation (proved later).

analysis of variance

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>between</td>
<td>(k-1)</td>
<td>(B)</td>
<td>(B/(k-1))</td>
<td>(B/(k-1))</td>
</tr>
<tr>
<td>within</td>
<td>(N-k)</td>
<td>(W)</td>
<td>(W/(N-k))</td>
<td>(W/(N-k))</td>
</tr>
<tr>
<td>total</td>
<td>(N-1)</td>
<td>(T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

decision rule: reject \(H_0 \) if \(F_{obs} > c_{0.95}(F_{k-1,N-k}) \).

P-value: \(P = Pr(F_{k-1,N-k} > F_{obs}) \).

example

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>between</td>
<td>3</td>
<td>3.00</td>
<td>1.00</td>
<td>6.75</td>
</tr>
<tr>
<td>within</td>
<td>11</td>
<td>1.62</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>14</td>
<td>4.62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tables: \(c_{0.95}(F_{3,11}) = 3.59 \), \(c_{0.99}(F_{3,11}) = 6.22 \).

So we would reject \(H_0 \).

<table>
<thead>
<tr>
<th></th>
<th>(n_i)</th>
<th>(x_{i\bullet})</th>
<th>(s_i^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.47, 2.59, 3.01, 2.17</td>
<td>4</td>
<td>10.24</td>
<td>0.1212</td>
</tr>
<tr>
<td>2.93, 3.56, 3.52</td>
<td>3</td>
<td>10.01</td>
<td>0.1245</td>
</tr>
<tr>
<td>2.47, 1.93, 2.20</td>
<td>3</td>
<td>6.60</td>
<td>0.0729</td>
</tr>
<tr>
<td>3.14, 3.29, 3.97, 2.94, 2.76</td>
<td>5</td>
<td>16.10</td>
<td>0.2159</td>
</tr>
<tr>
<td>(N = 15)</td>
<td>(\bar{x}_{\bullet} = 42.95)</td>
<td>(s_T^2 = 0.3299)</td>
<td></td>
</tr>
</tbody>
</table>

\[
\sum \sum x_{ij}^2 = 2.47^2 + 2.59^2 + \ldots + 2.76^2 = 127.5985
\]

\[
\sum \frac{s_i^2}{n_i} = \frac{10.24^2}{4} + \ldots + \frac{16.10^2}{5} = 125.9764
\]

\[
\frac{T^2}{N} = \frac{42.95^2}{15} = 122.9802
\]

Computation:

\[
T = \sum \sum (x_{ij} - \bar{x})^2 = \sum \sum x_{ij}^2 - \frac{\sum \sum x_{ij}^2}{N} = (N-1)s_T^2
\]

\[
B = \sum n_i (\bar{x}_i - \bar{x})^2 = \sum \frac{s_i^2}{n_i} - \frac{\sum s_i^2}{N} = T - W
\]

\[
W = \sum \sum (x_{ij} - \bar{x}_{i\bullet})^2 = T - B = \sum (n_i - 1)s_i^2
\]
...or better, use a computer!

MTB > print c1-c4

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.47</td>
<td>2.93</td>
<td>2.47</td>
<td>3.14</td>
</tr>
<tr>
<td>2</td>
<td>2.59</td>
<td>3.56</td>
<td>1.93</td>
<td>3.29</td>
</tr>
<tr>
<td>3</td>
<td>3.01</td>
<td>3.52</td>
<td>2.20</td>
<td>3.97</td>
</tr>
<tr>
<td>4</td>
<td>2.17</td>
<td>2.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MTB > aovo c1-c4

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR</td>
<td>3</td>
<td>2.996</td>
<td>0.999</td>
<td>6.77</td>
<td>0.007</td>
</tr>
<tr>
<td>ERROR</td>
<td>11</td>
<td>1.622</td>
<td>0.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>4.618</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

<table>
<thead>
<tr>
<th>N</th>
<th>MEAN</th>
<th>STDEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>4</td>
<td>2.5600</td>
</tr>
<tr>
<td>C2</td>
<td>3</td>
<td>3.3367</td>
</tr>
<tr>
<td>C3</td>
<td>3</td>
<td>2.2000</td>
</tr>
<tr>
<td>C4</td>
<td>5</td>
<td>3.2200</td>
</tr>
</tbody>
</table>

POOLED STDEV = 0.3840

\[\bar{x}_1 = 2.56, \bar{x}_2 = 3.34, \bar{x}_3 = 2.20, \bar{x}_4 = 3.22; \quad s^2 = 0.1475 \]

95% CI for \(\sigma^2 \) based on \(\frac{11S^2}{\sigma^2} \) \(\d \chi^2_{11} \)

\[\Pr(3.816 < \frac{11S^2}{\sigma^2} < 21.92) = 0.95 \quad \Rightarrow \quad 0.074 < \sigma^2 < 0.425 \]

(0.272 < \sigma < 0.652)

95% CI for \(\mu_1 \) based on \(\frac{\bar{X}_1 - \mu_1}{S/\sqrt{4}} \) \(\d t_{11} \)

\[\Pr(-2.201 < \frac{\bar{X}_1 - \mu_1}{\sqrt{\frac{1}{4}S^2}} < 2.201) = 0.95 \quad \Rightarrow \quad 2.14 < \mu_1 < 2.98 \]

95% CI for \(\mu_1 - \mu_2 \) based on \(\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S/\sqrt{\frac{1}{4} + \frac{1}{3}}} \) \(\d t_{11} \)

\[\Pr(-2.201 < \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{7}{12}S^2}} < 2.201) = 0.95 \]

\[\Rightarrow \quad -1.43 < \mu_1 - \mu_2 < -0.13 \]

95% PI for \(X_1 \) based on \(\frac{X_1^* - \bar{X}_1}{S/\sqrt{1 + \frac{1}{4}}} \) \(\d t_{11} \)

\[\Pr(-2.201 < \frac{X_1^* - \bar{X}_1}{\sqrt{\frac{7}{12}S^2}} < 2.201) = 0.95 \quad \Rightarrow \quad 1.61 < X_1^* < 3.51 \]
Multiple comparisons

Suppose we observe the following sample which is supposed to be from a standard normal population:

\[0.73 \quad -1.48 \quad 0.07 \quad 2.17 \quad -0.67 \]

We look at the fourth observation and note that:

\[\Pr(X \geq 2.17) = 0.015 \]

Does this mean that we should reject the model?

\[\Pr(X_{(5)} \geq 2.17) = 1 - 0.985^5 = 0.073 \]

So if we picked out 2.17 because it was the biggest, this observation is not significant. But ...

Similarly \(x_4 - x_2 = 3.65 \) which is large when compared to \(N(0, 2) \), but is it large when compared against the distribution of \(R = X_{(5)} - X_{(1)} \)?

Answer: No. It would need to be greater than 3.86 to be significant at the 0.05-level. *(from Tables p245; \(k = 5, \nu = \infty \))

Post-hoc procedures (Tukey)

standardised range distribution: \(Q_{k, \nu} = \frac{R_k}{S_\nu} \)

where \(R_k \) is the range of a sample of \(k \) \(N(\mu, \sigma^2) \) random variables;

and \(S_\nu \) is an estimator of \(\sigma \) having \(\nu \) degrees of freedom which is independent of \(R_k \).

Tables of standardised range distribution (page 233)

\[\Pr(Q_{k, \nu} < c) = 0.95 \]
\[\Pr(R_k < cS_\nu) = 0.95 \]

So if we observe \(|Z_i - Z_j| > cS_\nu \), then this can be taken as evidence that \(E(Z_i) \neq E(Z_j) \).

\[\Pr(R_k < cS) = 0.95 \]
\[\Pr(-cS < Z_i - Z_j < cS) = 0.95 \]
for all \(i, j \)

Now, \(\bar{X}_i - \mu_i \overset{d}{=} N(0, \frac{\sigma^2}{n}) \), so:

\[\Pr \left(-c\frac{S}{\sqrt{n}} < (\bar{X}_i - \mu_i) - (\bar{X}_j - \mu_j) < c\frac{S}{\sqrt{n}} \right) = 0.95 \]
for all \(i, j \)

\[\Pr \left(\bar{X}_i - \bar{X}_j - c\frac{S}{\sqrt{n}} < \mu_i - \mu_j < \bar{X}_i - \bar{X}_j + c\frac{S}{\sqrt{n}} \right) = 0.95 \]
for all \(i, j \)

where \(c = c_{0.95}(Q_{k, \nu}) \).

This gives a 95% simultaneous confidence interval for all the differences between means. These are the Tukey intervals provided by MINITAB.

If we observe \(|\bar{X}_i - \bar{X}_j| \) greater than \(cS/\sqrt{n} \), then this is evidence that \(\mu_i \) and \(\mu_j \) are significantly different.

The quantity \(cS/\sqrt{n} \) is often called the Least Significant Difference (LSD).
One minor problem: $c \frac{s}{\sqrt{n}}$ is not in the form $c \text{se}(\bar{X}_i - \bar{X}_j)$, since $\text{var}(\bar{X}_i - \bar{X}_j) = \frac{2\sigma^2}{n}$. Thus $c \frac{s}{\sqrt{n}} = \frac{c}{\sqrt{2}} \frac{s}{\sqrt{n}} = \frac{c}{\sqrt{2}} \text{se}(\bar{X}_i - \bar{X}_j)$.

It is more of a problem when there are groups of unequal sizes, since then this result applies only as an approximation: but we still use the multiplier $c/\sqrt{2}$, where $c = c_{0.95}(Q_k, \nu)$.

$$\text{LSD} \approx \frac{c}{\sqrt{2}} \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$

```
MTB > stack c1-c4 c10;
SUBC> subs c11.
MTB > oneway c10 c11;
SUBC> fisher;
SUBC> tukey.
```

Analysis of Variance on C10

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11</td>
<td>3</td>
<td>2.996</td>
<td>0.999</td>
<td>6.77</td>
<td>0.007</td>
</tr>
<tr>
<td>Error</td>
<td>11</td>
<td>1.622</td>
<td>0.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>4.618</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual 95% CIs For Mean Based on Pooled StDev

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>CIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2.5600</td>
<td>0.3481</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3.3367</td>
<td>0.3528</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2.2000</td>
<td>0.2700</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3.2200</td>
<td>0.4647</td>
</tr>
</tbody>
</table>

Pooled StDev = 0.3840 1.80 2.40 3.00 3.60

Fisher's pairwise comparisons

- Family error rate = 0.183
- Individual error rate = 0.050
- Critical value = 2.201

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1.4222 -0.1311</td>
</tr>
<tr>
<td>3</td>
<td>-0.2855 0.4466</td>
</tr>
<tr>
<td>4</td>
<td>-1.2270 -0.5006 -1.6372</td>
</tr>
<tr>
<td></td>
<td>-0.0930 0.7339 -0.4028</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons

- Family error rate = 0.050
- Individual error rate = 0.012
- Critical value = 4.26

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1.6601 0.1068</td>
</tr>
<tr>
<td>3</td>
<td>-0.5235 0.1922</td>
</tr>
<tr>
<td>4</td>
<td>-1.4360 -0.7281 -1.8648</td>
</tr>
<tr>
<td></td>
<td>0.1160 0.9614 -0.1752</td>
</tr>
</tbody>
</table>