Some solutions to Problem Set 2.

1. Here is one interpretation of the metrics: \(d_M \) gives the shortest distance between two points if you can only travel vertically and along the \(x_1 \)-axis; \(d_K \) gives the shortest distance if you can only travel along straight lines through the origin.

(b) The sequence \((x_n)\) does not converge in \((\mathbb{R}^2, d_M) \) since if \(x = (a, b) \in \mathbb{R}^2 \), then
\[
d_M(x_n, x) = \left\| \frac{n}{n+1} - a \right\| + \frac{n}{n+1} |b| \geq \frac{1}{2} \text{ for all } n \geq 1 \text{ with } \frac{n}{n+1} \neq a.
\]
However, \((x_n)\) converges to \(x = (1, 1) \) with respect to the metric \(d_K \) since
\[
d_K(x_n, x) = \left\| \left(\frac{n}{n+1} - 1, \frac{n}{n+1} - 1 \right) \right\| = \sqrt{\frac{2}{n+1}} \to 0 \text{ as } n \to \infty.
\]
(c) The sequence \((x_n)\) converges to \(x = (0, 0) \) in \((\mathbb{R}^2, d_M)\) since \(d_M(x_n, x) = \left| \frac{1}{n} - 0 \right| + \left(\sqrt{n+1} - \sqrt{n} \right) + |0| = \frac{1}{n} + \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0 \) as \(n \to \infty \). It also converges to \(x = (0, 0) \) in \((\mathbb{R}^2, d_K)\) since
\[
d_K(x_n, x) = \left\| \left(\frac{1}{n}, \sqrt{n+1} - \sqrt{n} \right) \right\| = \sqrt{\frac{1}{n^2} + \frac{1}{(\sqrt{n} + 1 + \sqrt{n})^2}} \leq \sqrt{\frac{2}{n}} \to 0.
\]

2. Using the triangle inequality twice we have \(d(x_n, y_m) \leq d(x_n, x) + d(x, y) + d(y, y_m) \), hence \(d(x_n, y_m) - d(x, y) \leq d(x_n, x) + d(y, y_m) \). Similarly, we obtain \(d(x_n, y_m) - d(x, y) \leq d(x_n, x) + d(y, y_m) \), hence \(|d(x_n, y_m) - d(x, y)| \leq |d(x_n, x) + d(y, y_m)| \). As \(n \to \infty \), we have \(d(x_n, x) \to 0 \) and \(d(y_m, y) \to 0 \), hence \(|d(x_n, y_m) - d(x, y)| \to 0 \), i.e. \(d(x_n, y_m) \to d(x, y) \).

3. (a) Consider \(\mathbb{R} \) with the metrics \(d(x, y) = |x - y| \) and \(\bar{d}(x, y) = \frac{|x - y|}{1 + |x - y|} \). Then \(d \) and \(\bar{d} \) are equivalent. However, they are not Lipschitz equivalent since if \(x_n = n \) and \(x = 0 \), then \(d(x_n, x) = n \) and \(\bar{d}(x_n, x) = \frac{n}{n+1} < 1 \) and so there is no constant \(C \) such that \(d(x_n, x) \leq C \cdot \bar{d}(x_n, x) \) for all \(n \).

(b) Define \(d_\infty(x, y) = \max\{ |x_1 - y_1|, \ldots, |x_n - y_n| \} \) for \(x, y \in \mathbb{R}^n \). Note that for any \(r \geq 1 \),
\[
d_\infty(x, y) \leq d_r(x, y) \leq n^{1/r} d_\infty(x, y).
\]

Hence if \(q > p \geq 1 \), then
\[
d_q(x, y) \leq n^{1/q} d_\infty(x, y) \leq n^{1/q} d_p(x, y)
\]
and
\[
d_p(x, y) \leq n^{1/p} d_\infty(x, y) \leq n^{1/p} d_q(x, y).
\]

Combining the above inequalities one gets
\[
n^{-1/q} d_q(x, y) \leq d_p(x, y) \leq n^{1/p} d_q(x, y).
\]

4.

(a) \(A \) is open in \(X \) but not in \(\mathbb{R} \), \(A \) is not closed in both spaces

(b) \(B \) is open in \(X \), not open in \(\mathbb{R} \), not closed in \(X \) and not closed in \(\mathbb{R} \)

(c) \(C \) is not open and not closed in \(X \). It is not open and not closed in \(\mathbb{R} \).

(d) \(D \) is not open in both spaces, and closed in both spaces.

(e) \(E \) open in both spaces, not closed in both spaces.

5. \(A \) is neither open nor closed, \(B \) is closed, \(C \) is neither open nor closed, \(D \) is neither open nor closed, \(E \) neither open nor closed.

6.

(a) \(A^o = A, \quad \overline{A} = \{(x, y) \mid x \geq 0\}, \quad \partial A = \{(x, y) \mid x = 0, y \in \mathbb{R}\} \cup \{(x, y) \mid x \geq 0, y = 0\}\)

(b) \(B^o = \emptyset, \quad B = \overline{B}, \quad \partial B = B \)
(c) \(C^0 = A, \overline{C} = \{ (x,y) \in \mathbb{R}^2 \mid x \geq 0 \}, \partial C = \{ (x,y) \mid x = 0, y \in \mathbb{R} \} \cup \{ (x,y) \in \mathbb{R}^2 \mid x \geq 0, y = 0 \} \)

(d) \(D^0 = \emptyset, \overline{D} = \mathbb{R}^2, \partial D = \mathbb{R}^2 \).

(e) \(F^0 = \{ (x,y) \mid x \neq 0 \text{ and } y < 1/x \}, \overline{F} = F \cup \{ (x,y) \mid x = 0, y \in \mathbb{R} \}, \partial F = \{ (x,y) \mid x \neq 0 \text{ and } y = 1/x \} \cup \{ (x,y) \mid x = 0, y \in \mathbb{R} \}. \)

7. The answer to both questions is No! For example consider \(A = \mathbb{Q} \) in \(\mathbb{R} \) equipped with the usual metric. Then \(A^0 = \emptyset \) but \(\overline{A} = \mathbb{R} \) so that \((\overline{A})^0 = \mathbb{R}^0 = \mathbb{R} \). Also \(A^0 = \emptyset \).

8. \(\bigcup_{i \in I} A_i^0 \subseteq \left(\bigcup_{i \in I} A_i \right)^0 \): Let \(x \in \bigcup_{i \in I} A_i^0 \). Then \(x \in A_i^0 \) for some \(i \). Hence \(B(x,r) \subseteq A_i \) for some \(r > 0 \), and so \(B(x,r) \subseteq \bigcup_{i \in I} A_i \). Consequently, \(x \) is an interior point of \(\bigcup_{i \in I} A_i \).

- \(\bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} \overline{A}_i \): Let \(x \in \bigcap_{i \in I} A_i \). So for every \(B(x,r) \cap \bigcap_{i \in I} A_i \neq \emptyset \) which means that \(B(x,r) \cap A_i \neq \emptyset \) for all \(i \in I \). Hence \(x \) is an adherent point of \(A_i \) for all \(i \in I \), that is, \(x \in \overline{A}_i \) for all \(i \in I \). Therefore, \(x \in \bigcap_{i \in I} \overline{A}_i \).

- \(\left(\bigcap_{i \in I} A_i^{0}\right) \subseteq \bigcap_{i \in I} A_i \): Let \(x \in \left(\bigcap_{i \in I} A_i^{0}\right) \). So \(B(x,r) \subseteq \bigcap_{i \in I} A_i \). Hence \(B(x,r) \subseteq A_i \) for all \(i \in I \), that is \(x \in A_i \) for all \(i \in I \). Therefore, \(x \in \bigcap_{i \in I} A_i \).

- \(\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} \overline{A}_i \): Let \(x \in \bigcup_{i \in I} A_i \). Then \(x \in A_j \) for some \(j \in I \), and so \(B(x,r) \cap A_j \neq \emptyset \). Consequently, \(B(x,r) \cap \left(\bigcup_{i \in I} A_i \right) \neq \emptyset \). This means that \(x \) is an adherent point of \(\bigcup_{i \in I} A_i \), i.e., \(x \in \bigcup_{i \in I} A_i \).

9. (a) Since \(A \subseteq \overline{A} \) and \(\partial A \subseteq \overline{A} \), \(A \cup \partial A \subseteq \overline{A} \). Conversely, if \(x \in \overline{A} \) and \(x \notin A \) then \(x \in \overline{X \setminus A} \) so that \(x \in \partial A \). Consequently, \(\overline{A} \subseteq A \cup \partial A \).

(b) If \(x \in \partial A \), then \(x \in \overline{A} \) and \(x \in \overline{X \setminus A} \). Since \(x \in \overline{X \setminus A} \), for every \(r > 0 \), \(B(x,r) \cap (X \setminus A) \neq \emptyset \), implying that \(x \notin A^0 \). Hence \(x \in \overline{A} \setminus A^0 \). Conversely, if \(x \in \overline{A} \setminus A^0 \), then for every \(r > 0 \), \(B(x,r) \cap [X \setminus A] \neq \emptyset \) since otherwise \(B(x,r) \subseteq A \) for some \(r \) and then \(x \in A^0 \). Hence \(x \in \overline{X \setminus A} \) and \(x \in \partial A \).

(c) If \(\overline{A} = A \), then in view of (b), \(\partial A = \overline{A} \setminus A^0 = A \setminus A^0 \). If \(\partial A = A \setminus A^0 \), then \(\partial A \subseteq A \) and in view of (a), \(\overline{A} = A \cup \partial A \subseteq A \) and so \(A \) is closed.

(d) If \(A \) is open, then using (b), \(\partial A = \overline{A} \setminus A^0 = \overline{X \setminus A} \). Conversely, if \(\partial A = \overline{X \setminus A} \), then in view of the second part of (b), \(A^0 = A \setminus \partial A = A \setminus [\overline{A} \setminus A] = A \setminus [\overline{A} \cap (X \setminus A)] = (A \setminus \overline{A}) \cup [A \setminus (X \setminus A)] = A \).

10. (a) Let \(a \in A \). We have to show that \(a \) is an interior point of \(A \). Since \(B \) is non-empty, there is \(b \in B \). So \((a,b) \in A \times B \). Since \(A \times B \) is open, \((a,b) \) is an interior point of \(A \times B \) and there exists \(r > 0 \) such that \(B((a,b),r) \subseteq A \times B \). For any \(x \in B(a,r) \), we have

\[
d((a,b),(x,b)) = d_X(a,x) + d_Y(b,b) = d_X(a,x) < r,
\]

so that \((x,b) \in B((a,b),r) \subseteq A \times B \). Hence \(B(a,r) \subseteq A \) and \(a \) is an interior point of \(A \). Consequently, any point in \(A \) is an interior point of \(A \) which means that \(A \) is open.

(b) Let \(x \in X \) be an adherent point of \(A \). We have to show that \(x \in A \). There exists a sequence \(\{x_n\} \) such that \(x_n \in A \) and \(x_n \to x \) in \(X \). Since \(B \) is non-empty, there is \(y \in B \). For the sequence \(\{x_n,y\} \in A \times B \), we have

\[
d((x_n,y),(x,y)) = d_X(x_n,x) + d_Y(y,y) = d_X(x_n,x) \to 0,
\]

showing that \((x,y) \) is an adherent point of \(A \times B \). Since \(A \times B \) is closed in \(X \times Y \), \((x,y) \in A \times B \), that is, \(x \in A \), as required.