Theorem. The structure of K_c is governed by the orbit of $z = 0$:

- If $Q^n_c(0) \not\to \infty$ then K_c is connected.
- If $Q^n_c(0) \to \infty$ then K_c is a Cantor set and is completely disconnected.

In this case $K_c = J_c$ and the dynamics of Q_c on this set is conjugate to the shift map on two symbols.

- This theorem suggests another set worth plotting:

Definition. The Mandelbrot set \mathcal{M} is the set:

$$\mathcal{M} = \{ c \in \mathbb{C} \mid K_c \text{ is connected} \}$$

By the above, this is equivalent to:

$$\mathcal{M} = \{ c \in \mathbb{C} \mid |Q^n_c(0)| \not\to \infty \}$$

Note:

- While K_c is a set of z-values — it lives in state-space.
- M is a set of c-values — it lives in parameter space.

- We can use the above, together with the escape criterion to build an algorithm to find \mathcal{M}
• Reminder...

Corollary (Escape criterion). Suppose \(\exists k \geq 0 \) such that
\[|Q^k_c(z)| > \max\{|c|, 2\} \] then \(|Q^n_c(z)| \to \infty \).

• Since \(Q_c(0) = c \) it follows that:

Corollary. To which points are not in \(M \):

• If \(|c| > 2 \) or \(|Q^k(c)| > 2 \) (for some \(k > 0 \)) then \(|Q^n_c(0)| \to \infty \)

• Hence \(c \notin M \)

Algorithm for the Mandelbrot set:

• Pick a grid of points in \(\mathbb{C} \) around \(z = 0 \) and some maximum number of iterations, \(N \).

• For each point \(c \) in the grid, compute the first \(N \) points of the orbit of \(z = 0 \) under \(Q_c \).

• If \(Q^k_c(0) \) “escapes” for some \(k \leq N \) then that \(c \) value is not in \(M \).

• Otherwise the \(c \) value is probably in \(M \).

• Colour points in \(M \) black, and other points white.

• Alternatively we can make prettier pictures by colouring those points that escape according to how fast they escape.
• Like K_c, the Mandelbrot set is incredibly complex.
• It is self-similar and is a fractal.
So what does this image mean?

Definition. An alternative definition of \mathcal{M} is:

$$\mathcal{M} = \{c \in \mathbb{C} \mid Q_c(z) \text{ has an attracting fp or pp}\}$$

- Say $Q_c(z)$ has an attracting fixed or periodic point.
- Then around this point there is a neighbourhood of points whose orbits converge to this point.
- All these points lie in K_c.
- Hence K_c is not a Cantor set, and so (by the above theorem) must be simply connected.
- So c is in \mathcal{M}.

- Indeed each “blob” or “bulb” of \mathcal{M} corresponds to a region of c in which Q_c has attracting periodic points of a given period.
• While this picture doesn’t look like it, M is actually connected.
• We can compute some of these bulbs exactly.

Proposition. *Period 1 and 2 bulbs:*

• $Q_c(z)$ has an attracting fixed point inside the region defined by

$$c = \frac{1}{2}e^{i\theta} - \frac{1}{4}e^{2i\theta}$$

• $Q_c(z)$ has an attracting 2-cycle point inside the region defined by

$$c = \frac{1}{4}e^{i\theta} - 1$$

• Other bulbs we have to check numerically.

• Though there is a general theorem for which bulbs are which period (we aren’t going to do it).
Proof: (fixed points)

- Denote the fixed points of Q_c by p_{\pm}.
- We require $|Q'_c(p_{\pm})| = 2|p_{\pm}| < 1$.
- So we have an attracting fp if $p_{\pm} = \rho e^{i\theta}$ with $\rho < 1/2$.
- Substituting this into $Q(z) = z$ gives
 \[
 \rho^2 e^{2i\theta} + c = \rho e^{i\theta}
 \]
 or
 \[
 c = \rho e^{i\theta} - \rho^2 e^{2i\theta}
 \]
- Which corresponds to c inside the region defined by
 \[
 c = \frac{1}{2} e^{i\theta} - \frac{1}{4} e^{2i\theta}
 \]

Proof: (2-cycle)

- The 2-cycle of Q_c is given by $q_{\pm} = -\frac{1}{2} \pm \frac{1}{2} \sqrt{-3 - 4c}$.
- We have $|(Q^2_c)'(z_0)| = |Q'_c(z_0)||Q'_c(z_1)|$.
- So for the 2-cycle we need $4|q_+||q_-| = 4|q_+ q_-| < 1$
- Now $q_+ q_- = c + 1$.
- Hence we need $|c + 1| < 1/4$, which corresponds to c inside the region
 \[
 c = \frac{1}{4} e^{i\theta} - 1
 \]
• The bifurcation diagrams we studied earlier correspond to the slice of \mathcal{M} along the real axis.

• The period 3 bulb in \mathcal{M} corresponds to the period 3 window in the bifurcation diagram
- Here is the period 3 bulb and corresponding window of the bifurcation diagram:
• We can also generate Mandelbrot sets for other functions:

• These are the Mandelbrot sets of $z^3 + c$, $z^4 + c$ and $z^5 + c$.
• We can find the period-1 bulbs of the Mandelbrot sets of $F(z) = z^n + c$:

Theorem. The period-1 bulb of the Mandelbrot set of $z^n + c$ is given by the curve:

$$c = n^{-1/(n-1)}e^{i\theta} - n^{-n/(n-1)}e^{ni\theta}$$

• We do this in the same way we did for $z^2 + c$.
• For a fixed point, we require that $|F'(z_0)| < 1$
• This gives the equation

$$|F'(z_0)| = n|z_0|^{n-1} < 1 \quad \text{or} \quad |z_0| < n^{-1/(n-1)}.$$

• Hence if we have a fixed point of the form $z_0 = \rho e^{i\theta}$ with $\rho < n^{-1/(n-1)}$, then it is attracting.
• Substituting this into $z^n + c = z$ to obtain c we get:

$$c = \rho e^{i\theta} - \rho^n e^{ni\theta}$$

• As so the required c values lie inside the curve:

$$c = n^{-1/(n-1)}e^{i\theta} - n^{-n/(n-1)}e^{ni\theta}$$