Some solutions to Problem Set 1.

1. (a) \(d \) does not satisfy the first axiom since \(d(-1, 1) = |(-1)^2 - (1)^2| = 0 \).
(b) \(d \) is a metric. (c) \(d \) is a metric. If \(d(x, y) = |\arctan x - \arctan y| = 0 \), then \(\arctan x = \arctan y \), so that \(x = y \) since \(x \mapsto \arctan x \) is a one-to-one function. The remaining axioms are evident.

3. Note that \(d(x, y) \) is half the number of horizontal and vertical steps needed to go from \(x \) to \(y \). The first two axioms are trivially satisfied. To see that \(d \) satisfies the triangle inequality we argue by contradiction and assume that there are \(x, y, z \in \mathbb{R}^2 \) such that
\[
d(x, z) > d(x, y) + d(y, z).
\]
In view of the definition of \(d \), this can happen if:

(1) \(d(x, z) > 0 \) and \(d(x, y) = d(y, z) = 0 \).
(2) \(d(x, z) = 1 \) and \(d(x, y) + d(y, z) = 1/2 \).

In the case (1), \(x = y = z \) since \(d(x, y) = d(y, z) = 0 \). But this contradicts \(d(x, z) > 0 \).
In the case (2), one of the numbers \(d(x, y) \), \(d(y, z) \) is equal to 0 and the other is equal to 1/2. Say \(d(x, y) = 0 \) and \(d(y, z) = 1/2 \). Hence \(x = y \) and so \(d(x, z) = 1/2 \) contradicting \(d(x, z) = 1 \). The “area” of the rectangle I is equal to \(1/2 \cdot 1/2 = 1/4 \). The “area” of the rectangle II is equal to \(1 \cdot 1 = 1 \).

4. Clearly, \(d_f(x, y) = 0 \) if and only if \(x = y \) and \(d_f(x, y) = d_f(y, x) \). If \(x, y \) and \(z \in X \), then \(d(x, z) \leq d(x, y) + d(y, z) \) and
\[
d_f(x, z) = f(d(x, z)) \leq f(d(x, y) + d(y, z))
\leq f(d(x, y)) + f(d(y, z)) \quad \text{by (a)}
\leq f(d(x, y)) + f(d(y, z)) \quad \text{by (c)}
= d_f(x, y) + d_f(y, z)
\]
Properties (a)–(c) are clear for \(f(t) = kt \). (Then \(d_f = kd \) is the metric \(d \) rescaled by a factor \(k > 0 \)). The derivatives of \(f(t) = t^\alpha \) and \(f(t) = \frac{t}{1+t} \) are positive for \(t > 0 \) so both functions are increasing. The property (b) is obvious for these two functions. If \(0 < t \leq s \), then \((t+s)^{\alpha-1} \leq s^{\alpha-1} \leq t^{\alpha-1} \) (since \(\alpha \leq 1 \)) and
\[
(t+s)^{\alpha} = (t+s)(t+s)^{\alpha-1} \leq (t+s)s^{\alpha-1} \leq s^{\alpha} + t^{\alpha},
\]
hence $f(t + s) \leq f(t) + f(s)$. For $f(t) = \frac{t}{1 + t}$ we have
\[
\frac{t + s}{1 + t + s} = \frac{t}{1 + t} + \frac{s}{1 + t + s} \leq \frac{t}{1 + t} + \frac{s}{1 + s}
\]
so that $f(t + s) \leq f(t) + f(s)$.

6. If $d(x, y) = 0$, then $d_i(x_i, y_i) = 0$, $1 \leq i \leq n$, so that $x_i = y_i$ for $1 \leq i \leq n$. So $x = (x_1, \ldots, x_n) = (y_1, \ldots, y_n)$. Since $d_i(x_i, y_i) = d_i(y_i, x_i)$ for $1 \leq i \leq n$, we have $d(x, y) = d(y, x)$. Let $x, y, z \in \prod_{i=1}^n X_i$. Set $a_i = d_i(x_i, z_i), b_i = d_i(x_i, y_i)$, and $c_i = d_i(y_i, z_i)$. We have $a_i \leq b_i + c_i$ for all $1 \leq i \leq n$, so
\[
\left[\sum_{i=1}^n a_i^2 \right]^{1/2} \leq \left[\sum_{i=1}^n (b_i + c_i)^2 \right]^{1/2}.
\]
Using Cauchy’s inequality
\[
\left[\sum_{i=1}^n (b_i + c_i)^2 \right]^{1/2} \leq \left[\sum_{i=1}^n b_i^2 \right]^{1/2} + \left[\sum_{i=1}^n c_i^2 \right]^{1/2},
\]
hence
\[
d(x, z) = \left[\sum_{i=1}^n a_i^2 \right]^{1/2} \leq \left[\sum_{i=1}^n b_i^2 \right]^{1/2} + \left[\sum_{i=1}^n c_i^2 \right]^{1/2} = d(x, y) + d(y, z),
\]
and the triangle inequality follows.

8. First note that for all $x, y \in X$, $\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} < 1$ for all n, so
\[
d(x, y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} < \sum_{n=1}^{\infty} \frac{1}{2^n} = 1,
\]
and d is a well-defined function $d : X \times X \to \mathbb{R}$.

If $d(x, y) = 0$, then $\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 0$ for all n. Hence $d_n(x_n, y_n) = 0$ for all n implying $x_n = y_n$ for all n. So $x = y$. Clearly, $d(x, y) = d(y, x)$ since $d_n(x_n, y_n) = d_n(y_n, x_n)$. In view of the solution of (4), $\frac{d_n(a, b)}{1 + d_n(a, b)}$, $a, b \in X$, is a metric on X_n and so
\[
d(x, z) = \sum_{n=1}^{\infty} \frac{d_n(x_n, z_n)}{2^n} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} \left[\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} + \frac{d_n(y_n, z_n)}{1 + d_n(y_n, z_n)} \right]
\]
\[
= \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} + \frac{d_n(y_n, z_n)}{2^n} = d(x, y) + d(y, z).
\]

10. (a) For integers $n, m \geq 1$ we have $d(2n, 2m) = |\frac{1}{2n} - \frac{1}{2m}| = \frac{1}{2} \cdot |\frac{1}{n} - \frac{1}{m}| \leq \frac{1}{2}$. So diam $(P) \leq 1/2$. To see that diam $(P) = 1/2$ note that $d(2n, 2) = \frac{1}{2}(1 - \frac{1}{n}) \to \frac{1}{2}$ as $n \to \infty$. For integers $n, m \geq 0$ we have $d(2n+1, 2m+1) = |\frac{1}{2n+1} - \frac{1}{2m+1}| < 1$. So diam $(\mathbb{N} \setminus P) \leq 1$.

Since $d(2n+1, 1) = 1 - \frac{1}{2n+1} \to 1$ as $n \to \infty$, we have diam $(\mathbb{N} \setminus P) = 1$.

(b) $B(2n, \frac{1}{2n}) = \{ m \in \mathbb{N} \mid |\frac{1}{2n} - \frac{1}{m}| < \frac{1}{2n} \} = \{ m \in \mathbb{N}, n < m \}$.

$B(n, \frac{1}{2n}) = \{ m \in \mathbb{N} \mid |\frac{1}{n} - \frac{1}{m}| < \frac{1}{2n} \} = \{ m \in \mathbb{N} \mid \frac{2m}{n} < m < 2n \}$.