ASSIGNMENT 5: INITIAL VALUE PROBLEMS
DUE: Thursday, May 30, 2002

1. Solve the following initial value problems numerically:

 (a) \(y' = y - x^2 + 1 \) for \(0 \leq x \leq 2 \) with the initial condition \(y(0) = 0.5 \).

 (b) \(y' = -20(x - 1)y \) for \(0 \leq x \leq 5 \) with the initial condition \(y(0) = e^{-10} \).

 Use each of the following methods with step sizes of 0.05, 0.025, and 0.0125:

 (i) the simple Euler method

 (ii) a second-order Runge-Kutta method

 (iii) a fourth-order Runge-Kutta method.

 In each case, use the exact solution to find the errors. Comment on your results; in particular, do the accuracies of the methods agree with those expected theoretically?

2. The Matlab commands ode23 and ode45 use a method of Runge-Kutta-Fehlberg type of orders 2 and 3 and orders 4 and 5 respectively. Apply them to:

 \(y' = 2x - 2y \), where \(y(0) = e^{-4} \), for \(0 \leq x \leq 3 \).

 Compare the ode23 results with a second-order Runge-Kutta method in terms of accuracy. Try tolerance values of \(10^{-3} \) and \(10^{-4} \); is the tolerance actually attained?

3. Apply the Adams-Bashforth-Moulton fourth-order predictor-corrector method with \(h = 0.125 \) to solve numerically the initial value problem

 \(y' = \frac{x - y}{2} \), \(y(0) = 1 \), for \(0 \leq x \leq 3 \).

 Use the fourth-order Runge-Kutta procedure to obtain the required additional starting values.

 Compare your approximations with the values obtained from the analytical solution of the initial value problem.